The Discrete Fourier Transform, Part 2: Radix 2 FFT

被引:1
|
作者
Lyon, Douglas [1 ,2 ,3 ]
机构
[1] AT&T Bell Labs, Murray Hill, NJ USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
[3] DocJava Inc, Milford, CT USA
来源
JOURNAL OF OBJECT TECHNOLOGY | 2009年 / 8卷 / 05期
关键词
D O I
10.5381/jot.2009.8.5.c2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper is part 2 in a series of papers about the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is on a fast implementation of the DFT, called the FFT (Fast Fourier Transform) and the IFFT (Inverse Fast Fourier Transform). The implementation is based on a well-known algorithm, called the Radix 2 FFT, and requires that its' input data be an integral power of two in length. Part 3 of this series of papers, demonstrates the computation of the PSD (Power Spectral Density) and applications of the DFT and IDFT. The applications include filtering, windowing, pitch shifting and the spectral analysis of re-sampling.
引用
收藏
页码:21 / 33
页数:13
相关论文
共 50 条
  • [21] REALIZATION OF A DISCRETE FOURIER-TRANSFORM (DFT) MODULE FOR INCORPORATION IN FFT PROCESSORS
    POMERLEAU, A
    FOURNIER, M
    BUIJS, HL
    [J]. PROCEEDINGS OF THE IEEE, 1977, 65 (01) : 173 - 174
  • [22] Split vector-radix-2/8 2-D fast Fourier transform
    Pei, SC
    Chen, WY
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (05) : 459 - 462
  • [23] SPLIT VECTOR RADIX 2-D FAST FOURIER-TRANSFORM
    PEI, SC
    WU, JL
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1987, 34 (08): : 978 - 980
  • [24] New Identical Radix-2k Fast Fourier Transform Algorithms
    Qureshi, Fahad
    Takala, Jarmo
    [J]. 2016 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2016, : 195 - 200
  • [25] Nonuniform discrete Fourier transform and its applications in filter design: Part II - 2-D
    Univ of California, Santa Barbara, United States
    [J]. IEEE Trans Circuits Syst II Analog Digital Signal Process, 6 (434-444):
  • [26] A RADIX-2 FFT ON THE CONNECTION MACHINE
    JOHNSSON, SL
    KRAWITZ, RL
    FRYE, R
    MACDONALD, D
    [J]. PROCEEDINGS : SUPERCOMPUTING 89, 1989, : 809 - 819
  • [27] 2D systolic solution to discrete Fourier transform
    [J]. Jones, K.J., 1600, (136):
  • [28] 2D Discrete Fourier Transform on Sliding Windows
    Park, Chun-Su
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (03) : 901 - 907
  • [29] Implementation of radix-2 and split-radix fast fourier transform algorithm using current mirrors
    Balakrishnan, Arun A.
    Babu, V. Suresh
    Baiju, M.R.
    [J]. Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2013, 2013, : 730 - 735
  • [30] Sliding 2D Discrete Fractional Fourier Transform
    Liu, Yu
    Miao, Hongxia
    Zhang, Feng
    Tao, Ran
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1733 - 1737