THE ESTIMATION OF THE QUANTILES IN THE IEQ REGRESSION

被引:0
|
作者
TUMMERS, MP
机构
[1] Tilburg University, Tilburg
关键词
D O I
10.1016/0014-2921(92)90034-T
中图分类号
F [经济];
学科分类号
02 ;
摘要
The maintained hypothesis that the evaluation question in the measurement of individual welfare functions is answered according to equal intervals of the [0,1]-scale is tested. Under the assumption that the welfare function can be approximated by a lognormal distribution function, the quantiles corresponding to the intervals are estimated jointly with the individual parameters of the welfare function. The estimation results for the quantiles reject the equal interval hypothesis.
引用
收藏
页码:1305 / 1310
页数:6
相关论文
共 50 条
  • [21] Regression models for quantiles
    Blagoveshchenskii Yu.N.
    Svyatodukh I.V.
    Journal of Mathematical Sciences, 2001, 103 (4) : 509 - 517
  • [22] On Extreme Regression Quantiles
    Stephen Portnoy
    Jana Jurecčkova´
    Extremes, 1999, 2 (3) : 227 - 243
  • [23] Regional estimation of flood quantiles:: Parametric versus nonparametric regression models
    Latraverse, M
    Rasmussen, PF
    Bobée, B
    WATER RESOURCES RESEARCH, 2002, 38 (07)
  • [24] REGRESSION RANK SCORES AND REGRESSION QUANTILES
    GUTENBRUNNER, C
    JURECKOVA, J
    ANNALS OF STATISTICS, 1992, 20 (01): : 305 - 330
  • [25] Smoothed binary regression quantiles
    Kordas, G
    JOURNAL OF APPLIED ECONOMETRICS, 2006, 21 (03) : 387 - 407
  • [26] PARAMETRIC ELLIPTICAL REGRESSION QUANTILES
    Hlubinka, Daniel
    Siman, Miroslav
    REVSTAT-STATISTICAL JOURNAL, 2020, 18 (03) : 257 - 280
  • [27] Pinball boosting of regression quantiles
    Bauer, Ida
    Haupt, Harry
    Linner, Stefan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 200
  • [28] Regression quantiles for time series
    Cai, ZW
    ECONOMETRIC THEORY, 2002, 18 (01) : 169 - 192
  • [29] About monotone regression quantiles
    Poiraud-Casanova, S
    Thomas-Agnan, C
    STATISTICS & PROBABILITY LETTERS, 2000, 48 (01) : 101 - 104
  • [30] Quantity quantiles linear regression
    Paolo Radaelli
    Michele Zenga
    Statistical Methods and Applications, 2008, 17 : 455 - 469