PARAMETRIC ELLIPTICAL REGRESSION QUANTILES

被引:0
|
作者
Hlubinka, Daniel [1 ]
Siman, Miroslav [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Prague, Czech Republic
[2] Czech Acad Sci, Inst Informat Theory & Automat, Prague, Czech Republic
关键词
multiple-output regression; quantile regression; nonlinear regression; elliptical quantile; MULTIVARIATE QUANTILES; ROBUST ESTIMATION; L-1; OPTIMIZATION;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The article extends linear and nonlinear quantile regression to the case of vector responses by generalizing multivariate elliptical quantiles to a regression context. In particular, it introduces parametric elliptical quantile regression in a general nonlinear multivariate heteroscedastic framework and discusses, investigates, and illustrates the new method in some detail, including basic properties, various parametrizations, possible heteroscedastic patterns, related computational issues, model validation, and a real biometric data example. The method seems suitable for multiresponse regression models with symmetric errors, especially if the dimension of responses is less than ten and if the right parametrization of the model follows from the context.
引用
收藏
页码:257 / 280
页数:24
相关论文
共 50 条