CONDITIONS OF EXTINCTION OF PHI-BRANCHING PROCESSES WITH RANDOM PHI

被引:0
|
作者
YANEV, NM
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:433 / 440
页数:8
相关论文
共 50 条
  • [41] Extinction of branching symmetric α-stable processes
    Shiozawa, Yuichi
    [J]. JOURNAL OF APPLIED PROBABILITY, 2006, 43 (04) : 1077 - 1090
  • [42] CONDITIONAL EMPIRICAL PROCESSES DEFINED BY PHI - MIXING SEQUENCES
    YOSHIHARA, K
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1990, 19 (01) : 149 - 158
  • [43] On the Phi-variation of stochastic processes with exponential moments
    Basse-O'Connor, Andreas
    Weber, Michel
    [J]. TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 3 (01): : 1 - 27
  • [44] The Extinction of a Branching Process in a Varying or Random Environment
    Hu, Yangli
    Hu, Wei
    Yin, Yue
    [J]. NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 309 - 315
  • [45] THE PROBABILITIES OF EXTINCTION IN A BRANCHING RANDOM WALK ON A STRIP
    Braunsteins, Peter
    Hautphenne, Sophie
    [J]. JOURNAL OF APPLIED PROBABILITY, 2020, 57 (03) : 811 - 831
  • [46] CONDITIONS FOR PHI (N) TO PROPERLY DIVIDE N - 1
    WATTERBE.PA
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A566 - A566
  • [47] A stopping procedure based on Phi-mixing conditions
    Chen, EJ
    Kelton, WD
    [J]. PROCEEDINGS OF THE 2000 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2000, : 617 - 626
  • [48] LIPSCHITZ CONDITIONS FOR SUB phi (Omega) -PROCESSES. APPLICATION TO WEAKLY SELF-SIMILAR PROCESSES WITH STATIONARY INCREMENTS
    Kozachenko, Yurii
    Sottinen, Tommi
    Vasylyk, Olga
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2010, 82 : 67 - 81
  • [49] VORTEX CONDENSATION IN A MODEL OF RANDOM PHI-4-GRAPHS
    DOREY, N
    KURZEPA, PS
    [J]. PHYSICS LETTERS B, 1992, 295 (1-2) : 51 - 58
  • [50] CONVERGENCE OF PHI-MIXING SEQUENCES OF RANDOM-VARIABLES
    STOUT, WF
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 31 (01): : 69 - 70