Extinction of branching symmetric α-stable processes

被引:4
|
作者
Shiozawa, Yuichi [1 ]
机构
[1] Tohoku Univ, Inst Math, Aoba Ku, Sendai, Miyagi 9808578, Japan
关键词
branching process; extinction; local extinction; Brownian motion; symmetric alpha-stable process; time change; principal eigenvalue; gaugeability;
D O I
10.1239/jap/1165505209
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a criterion for extinction or local extinction of branching symmetric alpha-stable processes in terms of the principal eigenvalue for time-changed processes of symmetric alpha-stable processes. Here the branching rate and the branching mechanism are spatially dependent. In particular, the branching rate is allowed to be singular with respect to the Lebesgue measure. We apply this criterion to some branching processes.
引用
收藏
页码:1077 / 1090
页数:14
相关论文
共 50 条
  • [1] Maximal Displacement of Branching Symmetric Stable Processes
    Shiozawa, Yuichi
    [J]. DIRICHLET FORMS AND RELATED TOPICS: IN HONOR OF MASATOSHI FUKUSHIMA'S BEIJU (IWDFRT 2022), 2022, 394 : 461 - 491
  • [2] Maximal displacement of critical branching symmetric stable processes
    Lalley, Steven P.
    Shao, Yuan
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (03): : 1161 - 1177
  • [3] Exponential growth of the numbers of particles for branching symmetric α-stable processes
    Shiozawa, Yuichi
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (01) : 75 - 116
  • [4] GENERAL BRANCHING PROCESSES CONDITIONED ON EXTINCTION ARE STILL BRANCHING PROCESSES
    Jagers, Peter
    Lageras, Andreas N.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 540 - 547
  • [5] Extinction of decomposable branching processes
    Vatutin, Vladimir A.
    Dyakonova, Elena E.
    [J]. DISCRETE MATHEMATICS AND APPLICATIONS, 2016, 26 (03): : 183 - 192
  • [6] Extinction of branching processes in varying environments
    Yu, Jinghu
    Pei, Jinli
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (17) : 1872 - 1877
  • [8] EXTINCTION PROBABILITY OF INTERACTING BRANCHING COLLISION PROCESSES
    Chen, Anyue
    Li, Junping
    Chen, Yiqing
    Zhou, Dingxuan
    [J]. ADVANCES IN APPLIED PROBABILITY, 2012, 44 (01) : 226 - 259
  • [9] Uniqueness and Extinction of Weighted Markov Branching Processes
    Anyue Chen
    Junping Li
    N. I. Ramesh
    [J]. Methodology and Computing in Applied Probability, 2005, 7 : 489 - 516
  • [10] EXTINCTION TIME OF MARKOV BRANCHING-PROCESSES
    WANG, RC
    [J]. JOURNAL OF APPLIED PROBABILITY, 1976, 13 (02) : 345 - 347