THE FERMAT-WEBER PROBLEM AND INNER-PRODUCT SPACES

被引:13
|
作者
DURIER, R
机构
[1] Université de Bourgogne, Laboratoire d’Analyse Numérique, 21004 Dijon Cédex
关键词
D O I
10.1006/jath.1994.1070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the setting of real normed spaces, we study the Fermat-Weber problem which deals with the minimization of the sum of weighted distances from a variable point to the points of a given finite set A. With techniques of best approximation we obtain a description of the set of solutions to this problem. Then we characterize inner product spaces as spaces in which the set of solutions to such problems meets the affine hull of A. The major tool is a characterization of inner product spaces, with finite dimension at least three, lying on some property of the exposed points of the unit ball. (C) 1994 Academic Press, Inc.
引用
收藏
页码:161 / 173
页数:13
相关论文
共 50 条
  • [1] On the continuous Fermat-Weber problem
    Fekete, SP
    Mitchell, JSB
    Beurer, K
    [J]. OPERATIONS RESEARCH, 2005, 53 (01) : 61 - 76
  • [2] The inverse Fermat-Weber problem
    Burkard, Rainer E.
    Galavii, Mohammadreza
    Gassner, Elisabeth
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (01) : 11 - 17
  • [3] The Fermat-Weber location problem revisited
    Brimberg, J.
    [J]. Mathematical Programming, Series B, 1995, 71 (01): : 71 - 76
  • [4] The Fermat-Weber location problem revisited
    Brimberg, J
    [J]. MATHEMATICAL PROGRAMMING, 1995, 71 (01) : 71 - 76
  • [5] Fermat-Weber location problem revisited
    Brimberg, J.
    [J]. Mathematical Programming, Series A, 1995, 71 (01):
  • [6] GEOMETRICAL PROPERTIES OF THE FERMAT-WEBER PROBLEM
    DURIER, R
    MICHELOT, C
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 20 (03) : 332 - 343
  • [7] Duality theorem for a generalized Fermat-Weber problem
    Kaplan, W
    Yang, WH
    [J]. MATHEMATICAL PROGRAMMING, 1997, 76 (02) : 285 - 297
  • [8] FERMAT-WEBER PROBLEM WITH CONVEX COST FUNCTIONS
    CORDELLIER, F
    FIOROT, JC
    [J]. MATHEMATICAL PROGRAMMING, 1978, 14 (03) : 295 - 311
  • [9] Duality theorem for a generalized Fermat-Weber problem
    Mathematics Department, University of Michigan, Ann Arbor, MI 48109, United States
    不详
    [J]. Math Program Ser B, 2 (285-297):
  • [10] ALGEBRAIC OPTIMIZATION - THE FERMAT-WEBER LOCATION PROBLEM
    CHANDRASEKARAN, R
    TAMIR, A
    [J]. MATHEMATICAL PROGRAMMING, 1990, 46 (02) : 219 - 224