FERMAT-WEBER PROBLEM WITH CONVEX COST FUNCTIONS

被引:15
|
作者
CORDELLIER, F
FIOROT, JC
机构
关键词
D O I
10.1007/BF01588972
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:295 / 311
页数:17
相关论文
共 50 条
  • [1] On the continuous Fermat-Weber problem
    Fekete, SP
    Mitchell, JSB
    Beurer, K
    [J]. OPERATIONS RESEARCH, 2005, 53 (01) : 61 - 76
  • [2] On the Fermat-Weber center of a convex object
    Carmi, P
    Har-Peled, S
    Katz, MJ
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 32 (03): : 188 - 195
  • [3] The inverse Fermat-Weber problem
    Burkard, Rainer E.
    Galavii, Mohammadreza
    Gassner, Elisabeth
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (01) : 11 - 17
  • [4] The Fermat-Weber location problem revisited
    Brimberg, J.
    [J]. Mathematical Programming, Series B, 1995, 71 (01): : 71 - 76
  • [5] The Fermat-Weber location problem revisited
    Brimberg, J
    [J]. MATHEMATICAL PROGRAMMING, 1995, 71 (01) : 71 - 76
  • [6] Fermat-Weber location problem revisited
    Brimberg, J.
    [J]. Mathematical Programming, Series A, 1995, 71 (01):
  • [7] GEOMETRICAL PROPERTIES OF THE FERMAT-WEBER PROBLEM
    DURIER, R
    MICHELOT, C
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 20 (03) : 332 - 343
  • [8] Duality theorem for a generalized Fermat-Weber problem
    Kaplan, W
    Yang, WH
    [J]. MATHEMATICAL PROGRAMMING, 1997, 76 (02) : 285 - 297
  • [9] Duality theorem for a generalized Fermat-Weber problem
    Mathematics Department, University of Michigan, Ann Arbor, MI 48109, United States
    不详
    [J]. Math Program Ser B, 2 (285-297):
  • [10] Duality theorem for a generalized Fermat-Weber problem
    Wilfred Kaplan
    Wei H. Yang
    [J]. Mathematical Programming, 1997, 76 : 285 - 297