Duality theorem for a generalized Fermat-Weber problem

被引:0
|
作者
Mathematics Department, University of Michigan, Ann Arbor, MI 48109, United States [1 ]
不详 [2 ]
机构
来源
Math Program Ser B | / 2卷 / 285-297期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Duality theorem for a generalized Fermat-Weber problem
    Kaplan, W
    Yang, WH
    [J]. MATHEMATICAL PROGRAMMING, 1997, 76 (02) : 285 - 297
  • [2] Duality theorem for a generalized Fermat-Weber problem
    Wilfred Kaplan
    Wei H. Yang
    [J]. Mathematical Programming, 1997, 76 : 285 - 297
  • [3] Local convexity results in a generalized Fermat-Weber problem
    Brimberg, J.
    Love, R.F.
    [J]. Computers and Mathematics with Applications, 1999, 37 (08): : 87 - 97
  • [4] Local convexity results in a generalized Fermat-Weber problem
    Brimberg, J
    Love, RF
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (08) : 87 - 97
  • [5] On the continuous Fermat-Weber problem
    Fekete, SP
    Mitchell, JSB
    Beurer, K
    [J]. OPERATIONS RESEARCH, 2005, 53 (01) : 61 - 76
  • [6] The inverse Fermat-Weber problem
    Burkard, Rainer E.
    Galavii, Mohammadreza
    Gassner, Elisabeth
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (01) : 11 - 17
  • [7] The Fermat-Weber location problem revisited
    Brimberg, J.
    [J]. Mathematical Programming, Series B, 1995, 71 (01): : 71 - 76
  • [8] The Fermat-Weber location problem revisited
    Brimberg, J
    [J]. MATHEMATICAL PROGRAMMING, 1995, 71 (01) : 71 - 76
  • [9] Fermat-Weber location problem revisited
    Brimberg, J.
    [J]. Mathematical Programming, Series A, 1995, 71 (01):
  • [10] GEOMETRICAL PROPERTIES OF THE FERMAT-WEBER PROBLEM
    DURIER, R
    MICHELOT, C
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 20 (03) : 332 - 343