AN ARTIFICIAL NEURAL NETWORK FOR CLASSIFICATION OF FORCED EXPIRED VOLUME SIGNALS

被引:0
|
作者
GAGE, HD [1 ]
MILLER, TK [1 ]
机构
[1] N CAROLINA STATE UNIV, DEPT ELECT & COMP ENGN, RALEIGH, NC 27695 USA
来源
PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, PTS 1-4 | 1988年
关键词
D O I
10.1109/IEMBS.1988.95350
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:1502 / 1503
页数:2
相关论文
共 50 条
  • [41] The classification of acidic dyes with artificial neural network
    Zhang, RS
    Yan, AX
    Liu, MC
    Hu, ZD
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1997, 18 (11): : 1783 - 1787
  • [42] Tajweed Classification Using Artificial Neural Network
    Ahmad, Fadzil
    Yahya, Saiful Zaimy
    Saad, Zuraidi
    Ahmad, Abdul Rahim
    2018 INTERNATIONAL CONFERENCE ON SMART APPLICATIONS, COMMUNICATIONS AND NETWORKING (SMARTNETS), 2018,
  • [43] A statistical rationale for the use of forced expired volume in 6 s
    Jensen, Robert L.
    Crapo, Robert O.
    Enright, Paul
    CHEST, 2006, 130 (06) : 1650 - 1656
  • [44] Indicator Patterns of Forced Change Learned by an Artificial Neural Network
    Barnes, Elizabeth A.
    Toms, Benjamin
    Hurrell, James W.
    Ebert-Uphoff, Imme
    Anderson, Chuck
    Anderson, David
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (09)
  • [45] Artificial Neural Network for Identification of Signals with Superposed Noises
    Balabanova, Ivelina
    Georgiev, Georgi
    Kostadinova, Stela
    PROCEEDINGS OF THE SECOND INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'17), VOL 1, 2018, 679 : 488 - 495
  • [46] An artificial deep neural network for the binary classification of network traffic
    Abdullah S.A.
    Al-Ashoor A.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (01): : 402 - 408
  • [47] An Artificial Deep Neural Network for the Binary Classification of Network Traffic
    Abdullah, Shubair A.
    Al-Ashoor, Ahmed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (01) : 402 - 408
  • [48] Use of artificial neural networks for classification of noisy seismic signals
    K. V. Kislov
    V. V. Gravirov
    Seismic Instruments, 2017, 53 (1) : 87 - 101
  • [49] Hardware Implementation of Artificial Neural Networks for Vibroacoustic Signals Classification
    Dabrowski, D.
    Jamro, E.
    Cioch, W.
    ACTA PHYSICA POLONICA A, 2010, 118 (01) : 41 - 44
  • [50] Artificial neural network analysis of common femoral artery Dopple shift signals: Classification of proximal disease
    Wright, IA
    Gough, NAJ
    ULTRASOUND IN MEDICINE AND BIOLOGY, 1999, 25 (05): : 735 - 743