AN ARTIFICIAL NEURAL NETWORK FOR CLASSIFICATION OF FORCED EXPIRED VOLUME SIGNALS

被引:0
|
作者
GAGE, HD [1 ]
MILLER, TK [1 ]
机构
[1] N CAROLINA STATE UNIV, DEPT ELECT & COMP ENGN, RALEIGH, NC 27695 USA
来源
PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, PTS 1-4 | 1988年
关键词
D O I
10.1109/IEMBS.1988.95350
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:1502 / 1503
页数:2
相关论文
共 50 条
  • [21] Wavelet Neural Network for classification of transient signals
    Tollig, CJA
    Hoffman, AJ
    COMSIG '97 - PROCEEDINGS OF THE 1997 SOUTH AFRICAN SYMPOSIUM ON COMMUNICATIONS AND SIGNAL PROCESSING, 1997, : 161 - 166
  • [22] Artificial Neural Networks for Acoustic Lung Signals Classification
    Orjuela-Canon, Alvaro D.
    Gomez-Cajas, Diego F.
    Jimenez-Moreno, Robinson
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 214 - 221
  • [23] Classification of Encephalographic Signals using Artificial Neural Networks
    Sepulveda, Roberto
    Montiel, Oscar
    Diaz, Gerardo
    Gutierrez, Daniel
    Castillo, Oscar
    COMPUTACION Y SISTEMAS, 2015, 19 (01): : 69 - 88
  • [24] Neural network classification of cerebral embolic signals
    Matos, S
    Ruano, MG
    Ruano, AE
    Evans, DH
    PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, 23 : 1761 - 1764
  • [25] Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals
    Djemili, Rafik
    Bourouba, Hocine
    Korba, M. C. Amara
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2016, 36 (01) : 285 - 291
  • [26] A multi-level feature fusion artificial neural network for classification of acoustic emission signals
    Huang, Jinliang
    Zhu, Zhaolin
    Chen, Zhihao
    Lu, Haotian
    Yang, Zijin
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2025, 1544 (01) : 223 - 241
  • [27] Classification of Respiratory Pathology in Pulmonary Acoustic Signals Using Parametric Features and Artificial Neural Network
    Palaniappan, Rajkumar
    Sundaraj, Kenneth
    Sundaraj, Sebastian
    Huliraj, N.
    Revadi, S. S.
    Archana, B.
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 134 - 139
  • [28] K-means clustering analysis and artificial neural network classification of fatigue strain signals
    Yunoh, M. F. M.
    Abdullah, S.
    Saad, M. H. M.
    Nopiah, Z. M.
    Nuawi, M. Z.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2017, 39 (03) : 757 - 764
  • [29] Artificial Neural Network for Laparoscopic Skills Classification Using Motion Signals from Apple Watch
    Laverde, Rubbermaid
    Rueda, Claudia
    Amado, Lusvin
    Rojas, David
    Altuve, Miguel
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5434 - 5437
  • [30] Feature Selection and Classification of Electroencephalographic Signals: An Artificial Neural Network and Genetic Algorithm Based Approach
    Erguzel, Turker Tekin
    Ozekes, Serhat
    Tan, Oguz
    Gultekin, Selahattin
    CLINICAL EEG AND NEUROSCIENCE, 2015, 46 (04) : 321 - 326