FIBONACCI PRIMITIVE ROOTS AND PERIOD OF FIBONACCI NUMBERS MODULO P

被引:0
|
作者
DELEON, MJ
机构
来源
FIBONACCI QUARTERLY | 1977年 / 15卷 / 04期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:353 / 355
页数:3
相关论文
共 50 条
  • [41] FIBONACCI NUMBERS
    DEALMEIDAAZEVEDO, JC
    FIBONACCI QUARTERLY, 1979, 17 (02): : 162 - 165
  • [42] A limit with nth roots of products of Fibonacci and Lucas numbers
    Bataille, Michel
    Bradie, Brian
    Fleischman, Dmitry
    Stadler, Albert
    Ventas, Andres
    FIBONACCI QUARTERLY, 2022, 60 (02): : 192 - 192
  • [43] Fibonacci Sums Modulo 5
    Adegoke, Kunle
    Frontczak, Robert
    Goy, Taras
    ANNALES MATHEMATICAE SILESIANAE, 2024,
  • [44] ON THE MATRIX APPROACH TO FIBONACCI NUMBERS AND THE FIBONACCI PSEUDOPRIMES
    POLLIN, JM
    SCHOENBERG, IJ
    FIBONACCI QUARTERLY, 1980, 18 (03): : 261 - 268
  • [45] On the distribution of primitive roots modulo p
    Zhang, WP
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (3-4): : 245 - 255
  • [46] ON PRIMITIVE ROOTS MODULO p~l
    孙琦
    李曙光
    ChineseScienceBulletin, 1989, (09) : 714 - 715
  • [47] DISCOVERING FIBONACCI NUMBERS, FIBONACCI WORDS, AND A FIBONACCI FRACTAL IN THE TOWER OF HANOI
    Hinz, Andreas M.
    Stockmeyer, Paul K.
    FIBONACCI QUARTERLY, 2019, 57 (05): : 72 - 83
  • [48] δ-FIBONACCI AND δ-LUCAS NUMBERS, δ-FIBONACCI AND δ-LUCAS POLYNOMIALS
    Witula, Roman
    Hetmaniok, Edyta
    Slota, Damian
    Pleszczynski, Mariusz
    MATHEMATICA SLOVACA, 2017, 67 (01) : 51 - 70
  • [49] Period lengths of continued fractions involving Fibonacci numbers
    Mollin, RA
    Cheng, K
    FIBONACCI QUARTERLY, 2004, 42 (02): : 161 - 169
  • [50] Dual complex Fibonacci p-numbers
    Prasad, B.
    CHAOS SOLITONS & FRACTALS, 2021, 145