On the distribution of primitive roots modulo p

被引:0
|
作者
Zhang, WP [1 ]
机构
[1] NW Univ, Dept Math, Xian, Shaanxi, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1998年 / 53卷 / 3-4期
关键词
primitive roots; mean value; asymptotic formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p greater than or equal to 3 be a prime. For each primitive root x module p with 1 less than or equal to x less than or equal to p - 1, it is clear that there exists one and only one primitive root (x) over bar module p with 1 less than or equal to (x) over bar less than or equal to p-1 such that x (x) over bar = 1 mod p. Let sigma be a fixed positive number with 0 less than or equal to sigma less than or equal to 1, A denotes the set of all primitive roots module p in interval [1,p]. The main purpose of this paper is to study the asymptotic properties of the mean value [GRAPHICS] ( )and give an interesting asymptotic formula.
引用
收藏
页码:245 / 255
页数:11
相关论文
共 50 条
  • [1] On the distribution of primitive roots modulo a prime
    Yi, Y
    Zhang, WP
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 61 (3-4): : 383 - 391
  • [2] ON PRIMITIVE ROOTS MODULO p~l
    孙琦
    李曙光
    [J]. Science Bulletin, 1989, (09) : 714 - 715
  • [3] On the distribution of consecutive square-free primitive roots modulo p
    Huaning Liu
    Hui Dong
    [J]. Czechoslovak Mathematical Journal, 2015, 65 : 555 - 564
  • [4] On the distribution of consecutive square-free primitive roots modulo p
    Liu, Huaning
    Dong, Hui
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 555 - 564
  • [5] On the distribution of consecutive (k, r)-integer primitive roots modulo p
    Srisopha, Sunanta
    Srichan, Teerapat
    [J]. JOURNAL OF ANALYSIS, 2024, 32 (03): : 1297 - 1308
  • [7] On additive decompositions of the set of primitive roots modulo p
    Dartyge, Cecile
    Sarkoezy, Andras
    [J]. MONATSHEFTE FUR MATHEMATIK, 2013, 169 (3-4): : 317 - 328
  • [8] On additive decompositions of the set of primitive roots modulo p
    Cécile Dartyge
    András Sárközy
    [J]. Monatshefte für Mathematik, 2013, 169 : 317 - 328
  • [9] ON PRIMITIVE ROOTS MODULO PL
    SUN, Q
    LI, SG
    [J]. CHINESE SCIENCE BULLETIN, 1989, 34 (09): : 714 - 715
  • [10] FIBONACCI PRIMITIVE ROOTS AND PERIOD OF FIBONACCI NUMBERS MODULO P
    DELEON, MJ
    [J]. FIBONACCI QUARTERLY, 1977, 15 (04): : 353 - 355