Linking Datasets Using Semantic Textual Similarity

被引:12
|
作者
McCrae, John P. [1 ]
Buitelaar, Paul [1 ]
机构
[1] Natl Univ Ireland Galway, Insight Ctr Data Analyt, Galway H91 A06C, Ireland
基金
欧盟地平线“2020”;
关键词
Linked data; link discovery; ontology alignment; semantic textual similarity; structural similarity; NLP architectures;
D O I
10.2478/cait-2018-0010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linked data has been widely recognized as an important paradigm for representing data and one of the most important aspects of supporting its use is discovery of links between datasets. For many datasets, there is a significant amount of textual information in the form of labels, descriptions and documentation about the elements of the dataset and the fundament of a precise linking is in the application of semantic textual similarity to link these datasets. However, most linking tools so far rely on only simple string similarity metrics such as Jaccard scores. We present an evaluation of some metrics that have performed well in recent semantic textual similarity evaluations and apply these to linking existing datasets.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 50 条
  • [41] Gradually Improving the Computation of Semantic Textual Similarity in Portuguese
    Oliveira, Hugo Goncalo
    Alves, Ana Oliveira
    Rodrigues, Ricardo
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017), 2017, 10423 : 841 - 854
  • [42] Semantic Textual Similarity Methods, Tools, and Applications: A Survey
    Majumder, Goutam
    Pakray, Partha
    Gelbukh, Alexander
    Pinto, David
    COMPUTACION Y SISTEMAS, 2016, 20 (04): : 647 - 665
  • [43] A proposal for annotation, semantic similarity and classification of textual documents
    Nauer, Emmanuel
    Napoli, Amedeo
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, PROCEEDINGS, 2006, 4183 : 201 - 212
  • [44] Evaluating Multimodal Representations on Visual Semantic Textual Similarity
    de Lacalle, Oier Lopez
    Salaberria, Ander
    Soroa, Aitor
    Azkune, Gorka
    Agirre, Eneko
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1990 - 1997
  • [45] C-STS: Conditional Semantic Textual Similarity
    Deshpande, Ameet
    Jimenez, Carlos E.
    Chen, Howard
    Murahari, Vishvak
    Graf, Victoria
    Rajpurohit, Tanmay
    Kalyan, Ashwin
    Chen, Danqi
    Narasimhan, Karthik
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 5669 - 5690
  • [46] Exploiting Syntactic and Semantic Information for Textual Similarity Estimation
    Luo, Jiajia
    Shan, Hongtao
    Zhang, Gaoyu
    Yuan, George
    Zhang, Shuyi
    Yan, Fengting
    Li, Zhiwei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [47] UESTS: An Unsupervised Ensemble Semantic Textual Similarity Method
    Hassan, Basma
    Abdelrahman, Samir E.
    Bahgat, Reem
    Farag, Ibrahim
    IEEE ACCESS, 2019, 7 : 85462 - 85482
  • [48] Semantic Disambiguation and Linking of Quantitative Mentions in Textual Content
    Ghashghaei, Mehrnaz
    Bagheri, Ebrahim
    Cuzzola, John
    Ghorbani, Ali A.
    Noorian, Zeinab
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2016, 10 (01) : 121 - 142
  • [49] A Combination of Enhanced WordNet and BERT for Semantic Textual Similarity
    Ramaiah Institute of Technology, India
    不详
    ACM Int. Conf. Proc. Ser., (191-198):
  • [50] Fine-grained Semantic Textual Similarity for Serbian
    Batanovic, Vuk
    Cvetanovic, Milos
    Nikolic, Bosko
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), 2018, : 1370 - 1378