Linking Datasets Using Semantic Textual Similarity

被引:12
|
作者
McCrae, John P. [1 ]
Buitelaar, Paul [1 ]
机构
[1] Natl Univ Ireland Galway, Insight Ctr Data Analyt, Galway H91 A06C, Ireland
基金
欧盟地平线“2020”;
关键词
Linked data; link discovery; ontology alignment; semantic textual similarity; structural similarity; NLP architectures;
D O I
10.2478/cait-2018-0010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linked data has been widely recognized as an important paradigm for representing data and one of the most important aspects of supporting its use is discovery of links between datasets. For many datasets, there is a significant amount of textual information in the form of labels, descriptions and documentation about the elements of the dataset and the fundament of a precise linking is in the application of semantic textual similarity to link these datasets. However, most linking tools so far rely on only simple string similarity metrics such as Jaccard scores. We present an evaluation of some metrics that have performed well in recent semantic textual similarity evaluations and apply these to linking existing datasets.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 50 条
  • [21] Semantic textual similarity between sentences using bilingual word semantics
    Md. Shajalal
    Masaki Aono
    Progress in Artificial Intelligence, 2019, 8 : 263 - 272
  • [22] Using Sentence Semantic Similarity Based on WordNet in Recognizing Textual Entailment
    Castillo, Julio J.
    Cardenas, Marina E.
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2010, 2010, 6433 : 366 - 375
  • [23] Prologue Evaluation of Semantic Similarity and Textual Inference
    Fonseca, Erick
    Santos, Leandro
    Criscuolo, Marcelo
    Aluisio, Sandra
    LINGUAMATICA, 2016, 8 (02): : IX - IX
  • [24] Probabilistic Soft Logic for Semantic Textual Similarity
    Beltagy, Islam
    Erk, Katrin
    Mooney, Raymond
    PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2014, : 1210 - 1219
  • [25] MedSTS: a resource for clinical semantic textual similarity
    Wang, Yanshan
    Afzal, Naveed
    Fu, Sunyang
    Wang, Liwei
    Shen, Feichen
    Rastegar-Mojarad, Majid
    Liu, Hongfang
    LANGUAGE RESOURCES AND EVALUATION, 2020, 54 (01) : 57 - 72
  • [26] Learning Semantic Textual Similarity from Conversations
    Yang, Yinfei
    Yuan, Steve
    Cer, Daniel
    Kong, Sheng-yi
    Constant, Noah
    Pilar, Petr
    Ge, Heming
    Sung, Yun-Hsuan
    Strope, Brian
    Kurzweil, Ray
    REPRESENTATION LEARNING FOR NLP, 2018, : 164 - 174
  • [27] Overview of the Evaluation of Semantic Similarity and Textual Inference
    Fonseca, Erick Rocha
    dos Santos, Leandro Borges
    Criscuolo, Marcelo
    Aluisio, Sandra Maria
    LINGUAMATICA, 2016, 8 (02): : 3 - 13
  • [28] MedSTS: a resource for clinical semantic textual similarity
    Yanshan Wang
    Naveed Afzal
    Sunyang Fu
    Liwei Wang
    Feichen Shen
    Majid Rastegar-Mojarad
    Hongfang Liu
    Language Resources and Evaluation, 2020, 54 : 57 - 72
  • [29] Interpretable Semantic Textual Similarity for Indonesian Sentence
    Rajagukguk, Rio Chandra
    Khodra, Masayu Leylia
    2018 5TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS: CONCEPTS, THEORY AND APPLICATIONS (ICAICTA 2018), 2018, : 147 - 152
  • [30] Textual entailment beyond semantic similarity information
    Vazquez, Sonia
    Kozareva, Zornitsa
    Montoyo, Andres
    MICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4293 : 900 - +