Robust Linear Spectral Unmixing Using Anomaly Detection

被引:37
|
作者
Altmann, Yoann [1 ]
McLaughlin, Steve [1 ]
Hero, Alfred [2 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
基金
英国工程与自然科学研究理事会;
关键词
Hyperspectral imagery; unsupervised spectral unmixing; Bayesian estimation; MCMC; anomaly detection;
D O I
10.1109/TCI.2015.2455411
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a Bayesian algorithm for linear spectral unmixing of hyperspectral images that accounts for anomalies present in the data. The model proposed assumes that the pixel reflectances are linear mixtures of unknown endmembers, corrupted by an additional nonlinear term modeling anomalies, and additive Gaussian noise. A Markov random field is used for anomaly detection based on the spatial and spectral structures of the anomalies. This allows outliers to be identified in particular regions and wavelengths of the data cube. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding a joint linear unmixing and anomaly detection algorithm. Simulations conducted with synthetic and real hyperspectral images demonstrate the accuracy of the proposed unmixing and outlier detection strategy for the analysis of hyperspectral images.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 50 条
  • [41] Sparse Linear Spectral Unmixing of Hyperspectral Images Using Expectation-Propagation
    Li, Zeng
    Altmann, Yoann
    Chen, Jie
    Mclaughlin, Stephen
    Rahardja, Susanto
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [42] Using Linear Spectral Unmixing for Subpixel Mapping of Hyperspectral Imagery: A Quantitative Assessment
    Xu, Xiong
    Tong, Xiaohua
    Plaza, Antonio
    Zhong, Yanfei
    Xie, Huan
    Zhang, Liangpei
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) : 1589 - 1600
  • [43] Combination of linear support vector machines and linear spectral mixed model for spectral unmixing
    Wang, Liguo
    Zhang, Ye
    Zhao, Chunhui
    [J]. INTELLIGENT COMPUTING IN SIGNAL PROCESSING AND PATTERN RECOGNITION, 2006, 345 : 767 - 772
  • [44] Non-linear spectral unmixing of hyperspectral data using Modified PPNMM
    Dixit, Ankur
    Agarwal, Shefali
    [J]. APPLIED COMPUTING AND GEOSCIENCES, 2021, 9
  • [45] Unmixing component analysis for anomaly detection in hyperspectral imagery
    Gu, Yanfeng
    Ye, Zhang
    Ying, Liu
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 965 - +
  • [46] Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding
    Ma, Li
    Crawford, Melba M.
    Tian, Jinwen
    [J]. JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2010, 31 (06) : 753 - 762
  • [47] Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding
    Li Ma
    Melba M. Crawford
    Jinwen Tian
    [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31 : 753 - 762
  • [48] Robust Anomaly Detection Using Reconstructive Adversarial Network
    Nie, Lihai
    Zhao, Laiping
    Li, Keqiu
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (02): : 1899 - 1912
  • [49] Robust and efficient anomaly detection using heterogeneous representations
    Hu, Xing
    Hu, Shiqiang
    Xie, Jinhua
    Zheng, Shiyou
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (03)
  • [50] Robust Anomaly Detection in Videos Using Multilevel Representations
    Hung Vu
    Tu Dinh Nguyen
    Trung Le
    Luo, Wei
    Dinh Phung
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5216 - 5223