Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding

被引:74
|
作者
Ma, Li [1 ,2 ]
Crawford, Melba M. [2 ]
Tian, Jinwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Multispectral Informat Proc Technol, Wuhan 430074, Hubei, Peoples R China
[2] Purdue Univ, Applicat Remote Sensing Lab, W Lafayette, IN 47906 USA
基金
美国国家科学基金会;
关键词
Hyperspectral images; Anomaly detection; Robust locally linear embedding (RLLE); Dimensionality reduction (DR); RX detector; NONLINEAR DIMENSIONALITY REDUCTION;
D O I
10.1007/s10762-010-9630-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, anomaly detection in hyperspectral images is investigated using robust locally linear embedding (RLLE) for dimensionality reduction in conjunction with the RX anomaly detector. The new RX-RLLE method is implemented for large images by subdividing the original image and applying the RX-RLLE operations to each subset. Moreover, from the kernel view of LLE, it is demonstrated that the RX-RLLE is equivalent to introducing a locally linear embedding (LLE) kernel into the kernel RX (KRX) algorithm. Experimental results indicate that the RX-RLLE has good anomaly detection performance and that RLLE has superior performance to LLE and principal component analysis (PCA) for dimensionality reduction in the application of anomaly detection.
引用
收藏
页码:753 / 762
页数:10
相关论文
共 50 条
  • [1] Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding
    Li Ma
    Melba M. Crawford
    Jinwen Tian
    [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31 : 753 - 762
  • [2] Sparsity divergence index based on locally linear embedding for hyperspectral anomaly detection
    Zhang, Lili
    Zhao, Chunhui
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [3] Dimensionality Reduction of Hyperspectral Images Based on Robust Spatial Information Using Locally Linear Embedding
    Fang, Yu
    Li, Hao
    Ma, Yong
    Liang, Kun
    Hu, Yingjie
    Zhang, Shaojie
    Wang, Hongyuan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (10) : 1712 - 1716
  • [4] LWIR and MWIR Images Dimension Reduction and Anomaly Detection with Locally Linear Embedding
    Aydogdu, Ayse Siddika
    Hatipoglu, Poyraz Umut
    Ozparlak, Levent
    Yuksel, Seniha Esen
    [J]. 2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 819 - 822
  • [5] Anomaly detection method for hyperspectral imagery based on locally linear fitting
    Dai Wei
    Wen Gongjian
    Zhang Xing
    [J]. PROCEEDINGS OF 2015 IEEE 12TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), VOL. 3, 2015, : 1178 - 1182
  • [6] Robust locally linear embedding
    Chang, H
    Yeung, DY
    [J]. PATTERN RECOGNITION, 2006, 39 (06) : 1053 - 1065
  • [7] AUTOENCODER IN AUTOENCODER NETWORK BASED ON LOW-RANK EMBEDDING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
    Cao, Weinan
    Zhang, Hongyan
    He, Wei
    Chen, Hongyu
    Tat, Ewe Hong
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3263 - 3266
  • [8] Robust Anomaly Detection Algorithm for Hyperspectral Images Using Spectral Unmixing
    Elrewainy, Ahmed
    Sherif, Sherif S.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [9] Anomaly Detection Based on Tree Topology for Hyperspectral Images
    Sun, Xiaotong
    Zhang, Bing
    Zhuang, Lina
    Gao, Hongmin
    Sun, Xu
    Ni, Li
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 1985 - 2008
  • [10] Robust and Stable Locally Linear Embedding
    Wang, Jing
    [J]. FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 197 - 201