Robust Linear Spectral Unmixing Using Anomaly Detection

被引:37
|
作者
Altmann, Yoann [1 ]
McLaughlin, Steve [1 ]
Hero, Alfred [2 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
基金
英国工程与自然科学研究理事会;
关键词
Hyperspectral imagery; unsupervised spectral unmixing; Bayesian estimation; MCMC; anomaly detection;
D O I
10.1109/TCI.2015.2455411
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a Bayesian algorithm for linear spectral unmixing of hyperspectral images that accounts for anomalies present in the data. The model proposed assumes that the pixel reflectances are linear mixtures of unknown endmembers, corrupted by an additional nonlinear term modeling anomalies, and additive Gaussian noise. A Markov random field is used for anomaly detection based on the spatial and spectral structures of the anomalies. This allows outliers to be identified in particular regions and wavelengths of the data cube. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding a joint linear unmixing and anomaly detection algorithm. Simulations conducted with synthetic and real hyperspectral images demonstrate the accuracy of the proposed unmixing and outlier detection strategy for the analysis of hyperspectral images.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 50 条
  • [1] ROBUST SPECTRAL UNMIXING FOR ANOMALY DETECTION
    Newstadt, Gregory E.
    Hero, Alfred O., III
    Simmons, Jeff
    [J]. 2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 109 - 112
  • [2] ROBUST LINEAR SPECTRAL UNMIXING USING OUTLIER DETECTION
    Altmann, Yoann
    McLaughlin, Steve
    Hero, Alfred
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2464 - 2468
  • [3] Robust Anomaly Detection Algorithm for Hyperspectral Images Using Spectral Unmixing
    Elrewainy, Ahmed
    Sherif, Sherif S.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [4] Requirements for anomaly detection in hyperspectral data using spectral unmixing
    Winter, EM
    [J]. CONFERENCE RECORD OF THE THIRTY-FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2000, : 174 - 176
  • [5] Anomaly detection using spectral unmixing with negative and superunity abundance weights
    Duran, O.
    Petrou, M.
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 4029 - 4032
  • [6] Joint Anomaly Detection and Spectral Unmixing for Planetary Hyperspectral Images
    Nakhostin, Sina
    Clenet, Harold
    Corpetti, Thomas
    Courty, Nicolas
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 6879 - 6894
  • [7] Spectral Unmixing With Negative and Superunity Abundances for Subpixel Anomaly Detection
    Duran, Olga
    Petrou, Maria
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (01) : 152 - 156
  • [8] Target detection using spectral unmixing
    Zhang, Lei
    Qiao, Kai
    Wu, Yinhua
    Li, Siyuan
    [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (21): : 3156 - 3166
  • [9] SPECTRAL UNMIXING USING LINEAR UNMIXING UNDER SPATIAL AUTOCORRELATION CONSTRAINTS
    Song, Xianfeng
    Jiang, Xiaoguang
    Rui, Xiaoping
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 975 - 978
  • [10] IMPROVING LINEAR SPECTRAL UNMIXING THROUGH LOCAL ENDMEMBER DETECTION
    Ramak, R.
    Zouj, M. J. Valadan
    Mojaradi, B.
    [J]. PIA15+HRIGI15 - JOINT ISPRS CONFERENCE, VOL. I, 2015, 40-3 (W2): : 177 - 181