ROBUST LINEAR SPECTRAL UNMIXING USING OUTLIER DETECTION

被引:0
|
作者
Altmann, Yoann [1 ]
McLaughlin, Steve [1 ]
Hero, Alfred [2 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh, Midlothian, Scotland
[2] Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
基金
英国工程与自然科学研究理事会;
关键词
Hyperspectral imagery; unsupervised spectral unmixing; Bayesian estimation; MCMC; nonlinearity detection; COMPONENT ANALYSIS; HYPERSPECTRAL IMAGERY; MIXTURE ANALYSIS; ALGORITHM; MODEL;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents a Bayesian algorithm for linear spectral unmixing that accounts for outliers present in the data. The proposed model assumes that the pixel reflectances are linear mixtures of unknown endmembers, corrupted by an additional term modelling outliers and additive Gaussian noise. A Markov random field is considered for outlier detection based on the spatial and spectral structures of the anomalies. This allows outliers to be identified in particular regions and wavelengths of the data cube. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding a joint linear unmixing and outlier detection algorithm. Simulations conducted with synthetic data demonstrate the accuracy of the proposed unmixing and outlier detection strategy for the analysis of hyperspectral images.
引用
收藏
页码:2464 / 2468
页数:5
相关论文
共 50 条
  • [1] Robust Linear Spectral Unmixing Using Anomaly Detection
    Altmann, Yoann
    McLaughlin, Steve
    Hero, Alfred
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2015, 1 (02) : 74 - 85
  • [2] ROBUST SPECTRAL UNMIXING FOR ANOMALY DETECTION
    Newstadt, Gregory E.
    Hero, Alfred O., III
    Simmons, Jeff
    [J]. 2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 109 - 112
  • [3] Robust Anomaly Detection Algorithm for Hyperspectral Images Using Spectral Unmixing
    Elrewainy, Ahmed
    Sherif, Sherif S.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [4] Target detection using spectral unmixing
    Zhang, Lei
    Qiao, Kai
    Wu, Yinhua
    Li, Siyuan
    [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (21): : 3156 - 3166
  • [5] SPECTRAL UNMIXING USING LINEAR UNMIXING UNDER SPATIAL AUTOCORRELATION CONSTRAINTS
    Song, Xianfeng
    Jiang, Xiaoguang
    Rui, Xiaoping
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 975 - 978
  • [6] IMPROVING LINEAR SPECTRAL UNMIXING THROUGH LOCAL ENDMEMBER DETECTION
    Ramak, R.
    Zouj, M. J. Valadan
    Mojaradi, B.
    [J]. PIA15+HRIGI15 - JOINT ISPRS CONFERENCE, VOL. I, 2015, 40-3 (W2): : 177 - 181
  • [7] Robust outlier detection using SVM regression
    Jordaan, EM
    Smits, GF
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2017 - 2022
  • [8] OUTLIER DETECTION USING ROBUST MEASURES OF SCALE
    IGLEWICZ, B
    MARTINEZ, J
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1982, 15 (04) : 285 - 293
  • [9] Robust outlier detection using the instability factor
    Ha, Jihyun
    Seok, Seulgi
    Lee, Jong-Seok
    [J]. KNOWLEDGE-BASED SYSTEMS, 2014, 63 : 15 - 23
  • [10] Optimal linear spectral unmixing
    Hu, YH
    Lee, HB
    Scarpace, FL
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (01): : 639 - 644