STILL FASTER MODULAR MULTIPLICATION

被引:15
|
作者
WALTER, CD
机构
[1] Computation Department, UMIST, Manchester M60 1QD, PO Box 88, Sackville Street
关键词
DIGITAL ARITHMETIC; CRYPTOGRAPHY; PUBLIC KEY CRYPTOGRAPHY;
D O I
10.1049/el:19950217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
By an appropriate choice of the modulus used in RSA cryptography, it is possible to simplify the hardware for performing the required modular multiplication steps, and thereby increase the speed of encryption and decryption. The author considers this when the algorithm of Montgomery is used.
引用
收藏
页码:263 / 264
页数:2
相关论文
共 50 条
  • [41] New modular multiplication algorithms for fast modular exponentiation
    Hong, SM
    Oh, SY
    Yoon, H
    ADVANCES IN CRYPTOLOGY - EUROCRYPT '96, 1996, 1070 : 166 - 177
  • [42] Faster unicores are still needed
    Seznec, Andre
    2013 INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING AND SIMULATION (IC-SAMOS), 2013, : III - III
  • [43] New systolic modular multiplication architecture for efficient Montgomery multiplication
    Choi, Se-Hyu
    Lee, Keon-Jik
    IEICE ELECTRONICS EXPRESS, 2015, 12 (02):
  • [44] Modular still matters
    Sherman, R.E. (Bob.Sherman@valero.com), 2012, Putman Publishing Company (25):
  • [45] AN EVEN FASTER SYSTOLIC ARRAY FOR MATRIX MULTIPLICATION
    BENAINI, A
    ROBERT, Y
    PARALLEL COMPUTING, 1989, 12 (02) : 249 - 254
  • [46] Faster Online Matrix-Vector Multiplication
    Larsen, Kasper Green
    Williams, Ryan
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 2182 - 2189
  • [47] Faster Matrix Multiplication via Asymmetric Hashing
    Duan, Ran
    Wu, Hongxun
    Zhou, Renfei
    2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS, 2023, : 2129 - 2138
  • [48] A Refined Laser Method and Faster Matrix Multiplication
    Alman, Josh
    Williams, Virginia Vassilevska
    PROCEEDINGS OF THE 2021 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2021, : 522 - 539
  • [49] Faster Polynomial Multiplication over Finite Fields
    Harvey, David
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL OF THE ACM, 2017, 63 (06)
  • [50] Faster Matrix Multiplication via Sparse Decomposition
    Beniamini, Gal
    Schwartz, Oded
    SPAA'19: PROCEEDINGS OF THE 31ST ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURESS, 2019, 2019, : 11 - 22