ON THE ASYMPTOTICS OF THE LOW-LYING EIGENVALUES AND EIGENFUNCTIONS FOR THE SCRODINGER OPERATOR

被引:0
|
作者
KOLOKOLTSOV, VN
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
下载
收藏
页码:649 / 653
页数:5
相关论文
共 50 条
  • [1] Low-lying eigenvalues of the Wilson-Dirac operator
    Jansen, K
    Liu, C
    Simma, H
    Smith, D
    NUCLEAR PHYSICS B, 1997, : 262 - 265
  • [2] ITERATIVE METHOD FOR CALCULATING LOW-LYING EIGENVALUES OF AN HERMITIAN OPERATOR
    BERGER, WA
    MILLER, HG
    KREUZER, KG
    DREIZLER, RM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (07): : 1089 - 1095
  • [3] Low-lying eigenvalues of the QCD Dirac operator at finite temperature
    Damgaard, PH
    Heller, UM
    Niclasen, R
    Rummukainen, K
    NUCLEAR PHYSICS B, 2000, 583 (1-2) : 347 - 367
  • [4] Low-lying eigenvalues of semiclassical Schrodinger operator with degenerate wells
    Bony, Jean-Francois
    Popoff, Nicolas
    ASYMPTOTIC ANALYSIS, 2019, 112 (1-2) : 23 - 36
  • [5] Low-lying eigenvalues of the improved Wilson-Dirac operator in QCD
    Simma, H
    Smith, D
    THEORY OF ELEMENTARY PARTICLES, 1998, : 316 - 321
  • [6] The Asymptotics of Eigenvalues and Eigenfunctions of a Singular Quasidifferential Operator on a Finite Interval
    A. V. Makhnei
    R. M. Tatsii
    Differential Equations, 2003, 39 : 1098 - 1105
  • [7] Asymptotics for the low-lying eigenstates of the Schrodinger operator with magnetic field near corners
    Bonnaillie-Noel, Virginie
    Dauge, Monique
    ANNALES HENRI POINCARE, 2006, 7 (05): : 899 - 931
  • [8] The asymptotics of eigenvalues and eigenfunctions of a singular quasidifferential operator on a finite interval
    Makhnei, AV
    Tatsii, RM
    DIFFERENTIAL EQUATIONS, 2003, 39 (08) : 1098 - 1105
  • [9] Asymptotics for the Low-Lying Eigenstates of the Schrödinger Operator with Magnetic Field near Corners
    Virginie Bonnaillie-Noël
    Monique Dauge
    Annales Henri Poincaré, 2006, 7 : 899 - 931
  • [10] Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with an oscillating boundary
    Amirat Y.
    Chechkin G.A.
    Gadyl'shin R.R.
    Computational Mathematics and Mathematical Physics, 2006, 46 (1) : 97 - 110