Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with an oscillating boundary

被引:0
|
作者
Amirat Y. [1 ]
Chechkin G.A. [2 ]
Gadyl'shin R.R. [3 ,4 ]
机构
[1] Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal
[2] Department of Differential Equations, Faculty of Mechanics and Mathematics, Moscow State University, Moscow
[3] Institute of Mathematics (With Computing Center), Russian Academy of Sciences, Ufa
[4] Department of Mathematical Analysis, Faculty of Physics and Mathematics, Bashkir State Pedagogical University, Ufa
基金
俄罗斯基础研究基金会;
关键词
Asymptotics; Matching of asymptotic expansions; Oscillating boundary; Spectrum of the Laplacian;
D O I
10.1134/S0965542506010118
中图分类号
学科分类号
摘要
The asymptotic behavior of solutions to spectral problems for the Laplace operator in a domain with a rapidly oscillating boundary is analyzed. The leading terms of the asymptotic expansions for eigenelements are constructed, and the asymptotics are substantiated for simple eigenvalues. © MAIK "Nauka/Interperiodica" (Russia), 2006.
引用
收藏
页码:97 / 110
页数:13
相关论文
共 50 条