Parameter Identification Using ANFIS for Magnetically Saturated Induction Motor

被引:2
|
作者
Ali, Mohamed M. Ismail [1 ]
Hassan, M. A. Moustafa [2 ]
机构
[1] Helwan Univ, Fac Engn, Qism Helwan, Cairo, Egypt
[2] Cairo Univ, Dept Elect Engn, Cairo, Egypt
关键词
Adaptive Neuro Fuzzy Inference Systems (ANFIS); Artificial Neural Networks; Fuzzy Logic; Magnetically Saturated Induction Motor; Parameter Identifications;
D O I
10.4018/ijsda.2012040103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of controlling the p-model induction motor with magnetic saturation is considered in this paper. The motor parameters such that stator resistance R-s, rotor resistance R-r and load torque T-L can be varied during the operation, many techniques are used for online identification of the motor parameters. In this paper, the authors use a new technique which is the Adaptive Neuro Fuzzy Inference Systems (ANFIS) technique for online identification of the motor parameters. A simulation study is illustrated using MATLAB/Simulink depending on stator currents and speed measurements. All the unknown parameters are assumed constant or slowly varying and are estimated online by the controller. The proposed technique shows promising results.
引用
收藏
页码:28 / 43
页数:16
相关论文
共 50 条
  • [41] Parameter identification for sensorless vector-controlled induction motor system using image processor
    Tsuji, M
    Chen, S
    Motoo, T
    Kawabe, Y
    Hamasaki, S
    ICEMS 2005: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-3, 2005, : 1828 - 1833
  • [42] A novel parameter identification of vector controlled induction motor using a phase lag current control
    Tsuji, M
    Tomonaga, K
    Ohmachi, M
    Izumi, K
    IECON-2002: PROCEEDINGS OF THE 2002 28TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4, 2002, : 329 - 334
  • [43] Experimental evaluation on parameter identification of induction motor using output inter-sampling approach
    Hasegawa, Masaru
    Gawa, Daisuke
    Matsui, Keiju
    2005 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY - (ICIT), VOLS 1 AND 2, 2005, : 1347 - 1352
  • [44] A robust torque control of induction motor for electric vehicle applications using ANFIS
    Vasudevan, M
    Arumugam, R
    TENCON 2004 - 2004 IEEE REGION 10 CONFERENCE, VOLS A-D, PROCEEDINGS: ANALOG AND DIGITAL TECHNIQUES IN ELECTRICAL ENGINEERING, 2004, : D17 - D20
  • [45] Direct Torque Control of Induction Motor Using Enhanced Firefly Algorithm - ANFIS
    Sekhar, J. N. Chandra
    Marutheswar, G. V.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2017, 26 (06)
  • [46] Induction motor parameter estimation using metaheuristic methods
    Canakoglu, All Ihsan
    Yetgin, Asim Gokhan
    Temurtas, Hasan
    Turan, Mustafa
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2014, 22 (05) : 1177 - 1192
  • [47] The Induction Motor Parameter Estimation Using Genetic Algorithm
    Fortes, M. Z.
    Ferreira, V. H.
    Coelho, A. P. F.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (05) : 1273 - 1278
  • [48] On-Line Parameter Identification of Induction Motor Based On RLS Algorithm
    Zhang Hu
    Gong Shu-juan
    Dong Zi-zhao
    2013 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2013, : 2132 - 2137
  • [49] DYNAMIC EQUIVALENT OF AN INDUSTRIAL INDUCTION-MOTOR LOAD BY PARAMETER IDENTIFICATION
    RICHARDS, GG
    TAN, OT
    ARCHIV FUR ELEKTROTECHNIK, 1979, 61 (05): : 279 - 285
  • [50] An improved method of induction motor parameter identification based on genetic algorithm
    Xiao, Xi
    Wang, Yating
    Xu, Qingsong
    Shi, Yuchao
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2013, 28 (SUPPL.1): : 331 - 335