Parameter Identification Using ANFIS for Magnetically Saturated Induction Motor

被引:2
|
作者
Ali, Mohamed M. Ismail [1 ]
Hassan, M. A. Moustafa [2 ]
机构
[1] Helwan Univ, Fac Engn, Qism Helwan, Cairo, Egypt
[2] Cairo Univ, Dept Elect Engn, Cairo, Egypt
关键词
Adaptive Neuro Fuzzy Inference Systems (ANFIS); Artificial Neural Networks; Fuzzy Logic; Magnetically Saturated Induction Motor; Parameter Identifications;
D O I
10.4018/ijsda.2012040103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of controlling the p-model induction motor with magnetic saturation is considered in this paper. The motor parameters such that stator resistance R-s, rotor resistance R-r and load torque T-L can be varied during the operation, many techniques are used for online identification of the motor parameters. In this paper, the authors use a new technique which is the Adaptive Neuro Fuzzy Inference Systems (ANFIS) technique for online identification of the motor parameters. A simulation study is illustrated using MATLAB/Simulink depending on stator currents and speed measurements. All the unknown parameters are assumed constant or slowly varying and are estimated online by the controller. The proposed technique shows promising results.
引用
收藏
页码:28 / 43
页数:16
相关论文
共 50 条
  • [31] PARAMETER-IDENTIFICATION OF INDUCTION-MOTOR DRIVES
    MOONS, C
    DEMOOR, B
    AUTOMATICA, 1995, 31 (08) : 1137 - 1147
  • [32] Experimental evaluation on parameter identification of induction motor using continuous-time approaches
    Cerqueira, Nuno Miguel
    Soares, Jose Ricardo
    de Castro, Ricardo Pinto
    Oliveira, Hugo Santos
    Araujo, Rui Esteves
    POWERENG2007: INTERNATIONAL CONFERENCE ON POWER ENGINEERING - ENERGY AND ELECTRICAL DRIVES PROCEEDINGS, VOLS 1 & 2, 2007, : 162 - 167
  • [33] Parameter Identification of Three-Phase Induction Motor using MATLAB-Simulink
    Salimin, Rahmatul Hidayah
    Abd Kadir, Siti Hajar Binti
    Baki, Shah Rizam Mohd. Shah
    Ismail, Faridah
    PROCEEDINGS OF THE 2013 IEEE 7TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO2013), 2013, : 647 - 651
  • [34] Comparison on the Performance of Induction Motor Control Using Fuzzy and ANFIS Controllers
    Simon, Rinu
    Geetha, A.
    2013 IEEE INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMPUTING, COMMUNICATION AND NANOTECHNOLOGY (ICE-CCN'13), 2013, : 491 - 495
  • [35] Applications of ANFIS and Fuzzy Algorithms for Improvement of the DTC Performance for the Three Phase Saturated Model of Induction Motor
    Ismail, Mohamed M.
    INTERNATIONAL JOURNAL OF SYSTEM DYNAMICS APPLICATIONS, 2012, 1 (03) : 54 - 83
  • [36] Parameter Identification for Induction Motor Eliminating Dead Zone Effect
    Yu, Baiqiang
    Shen, Anwen
    Kong, Yu
    Yue, Shuo
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1669 - 1675
  • [37] Sensorless vector controller for induction motor drives with parameter identification
    Perng, SS
    Lai, YS
    Liu, CH
    IECON '98 - PROCEEDINGS OF THE 24TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4, 1998, : 1008 - 1013
  • [38] Parameter identification of induction motor based on particle swarm optimization
    Picardi, C.
    Rogano, N.
    2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3, 2006, : 968 - +
  • [39] Non-intrusive parameter identification method of induction motor
    Yu, Yi-Xin
    Li, Peng
    Guo, Jin-Chuan
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2008, 41 (11): : 1269 - 1275
  • [40] FEA-Assisted Experimental Parameter Identification of Induction Motor
    Yoo, Jiwon
    Lee, Joon-Hee
    Sul, Seung-Ki
    2022 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-HIMEJI 2022- ECCE ASIA), 2022, : 789 - 794