Parameter Identification Using ANFIS for Magnetically Saturated Induction Motor

被引:2
|
作者
Ali, Mohamed M. Ismail [1 ]
Hassan, M. A. Moustafa [2 ]
机构
[1] Helwan Univ, Fac Engn, Qism Helwan, Cairo, Egypt
[2] Cairo Univ, Dept Elect Engn, Cairo, Egypt
关键词
Adaptive Neuro Fuzzy Inference Systems (ANFIS); Artificial Neural Networks; Fuzzy Logic; Magnetically Saturated Induction Motor; Parameter Identifications;
D O I
10.4018/ijsda.2012040103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of controlling the p-model induction motor with magnetic saturation is considered in this paper. The motor parameters such that stator resistance R-s, rotor resistance R-r and load torque T-L can be varied during the operation, many techniques are used for online identification of the motor parameters. In this paper, the authors use a new technique which is the Adaptive Neuro Fuzzy Inference Systems (ANFIS) technique for online identification of the motor parameters. A simulation study is illustrated using MATLAB/Simulink depending on stator currents and speed measurements. All the unknown parameters are assumed constant or slowly varying and are estimated online by the controller. The proposed technique shows promising results.
引用
收藏
页码:28 / 43
页数:16
相关论文
共 50 条
  • [1] Speed Estimation Using ANFIS with The Adaptive Controller Of Magnetically Saturated Induction Motor
    Hassan, M. Moustafa
    Ismail, M. Mahmoud
    PROCEEDINGS OF THE 2011-14TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE 2011), 2011,
  • [2] Rotor Parameter Identification of Saturated Induction Machines
    Ranta, Mikaela
    Hinkkanen, Marko
    Luomi, Jorma
    2009 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION, VOLS 1-6, 2009, : 1451 - 1458
  • [3] Parameter identification of induction motor model using genetic algorithms
    Alonge, F
    D'Ippolito, F
    Ferrante, G
    Raimondi, FM
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1998, 145 (06): : 587 - 593
  • [4] Induction Motor Parameter Identification Using a Gravitational Search Algorithm
    Avalos, Omar
    Cuevas, Erik
    Galvez, Jorge
    COMPUTERS, 2016, 5 (02)
  • [5] Parameter identification on induction motor load using measured data
    Nagoya H.
    Komami S.
    IEEJ Transactions on Power and Energy, 2010, 130 (07) : 633 - 639+2
  • [6] Parameter Identification of Induction Motor Drives
    Khitrov, Alexander
    Khitrov, Andrei
    Kurnikov, Kirill
    2021 28TH INTERNATIONAL WORKSHOP ON ELECTRIC DRIVES: IMPROVING RELIABILITY OF ELECTRIC DRIVES (IWED2021), 2021,
  • [7] A Novel Speed Identification Method of Induction Motor Based ANFIS
    Han, Bingzhe
    OuYang, Honglin
    Lv, Yanhui
    Tang, Long
    2013 CHINESE AUTOMATION CONGRESS (CAC), 2013, : 53 - 58
  • [8] Induction Motor Control Using PSO-ANFIS
    Mahapatra, Sakuntala
    Daniel, Raju
    Dey, Deep Narayan
    Nayak, Santanu Kumar
    INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND CONVERGENCE (ICCC 2015), 2015, 48 : 753 - 768
  • [9] Induction motor control using PSO-ANFIS
    20153301167858
    (1) Dept. of Electronics and Telecommunication Engineering, Trident Academy of Technology, Bhubaneswar, Odisha; 751024, India; (2) Scientist-SF at IPR, Autonomous Inst. of the Department of Atomic Energy, India, 1600, (Elsevier B.V., Netherlands):
  • [10] Parameter Identification of an Induction Motor at Standstill Using Vector Constructing Method
    He, Yanhui
    Feng, Yupeng
    Wang, Yue
    Wang, Zhao'an
    Lei, Wanjun
    2010 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION, 2010, : 4204 - 4209