MISHINA,AP - HIGHER ALGEBRA LINEAR ALGEBRA POLYNOMIALS GENERAL ALGEBRA

被引:0
|
作者
ALBRECHT, R
机构
来源
ZEITSCHRIFT FUR ANGEWANDTE PHYSIK | 1967年 / 23卷 / 01期
关键词
D O I
暂无
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
引用
收藏
页码:59 / &
相关论文
共 50 条
  • [31] On employing linear algebra approach to hybrid Sheffer polynomials
    Jeelani, Mdi Begum
    AIMS MATHEMATICS, 2022, 8 (01): : 1871 - 1888
  • [32] A linear algebra approach to the hybrid Sheffer–Appell polynomials
    Subuhi Khan
    Mahvish Ali
    Mathematical Sciences, 2019, 13 : 153 - 164
  • [33] The algebra of linear functionals on polynomials, with applications to Pade approximation
    Brezinski, C
    Maroni, P
    NUMERICAL ALGORITHMS, 1996, 11 (1-4) : 25 - 33
  • [34] The multiplicative Lie algebra on general linear groups
    Kumar, Akshay
    Kushwaha, Seema
    Upadhyay, Sumit Kumar
    GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [35] Introduction to Higher Algebra
    不详
    EDUCATION, 1908, 28 (05): : 334 - 334
  • [36] INDRODUCTION TO HIGHER ALGEBRA
    不详
    CURRENT SCIENCE, 1965, 34 (14): : 443 - &
  • [37] Orthogonal polynomials and computer algebra
    Koepf, W
    RECENT DEVELOPMENTS IN COMPLEX ANALYSIS AND COMPUTER ALGEBRA, 1999, 4 : 205 - 234
  • [38] Some algebra of Newton polynomials
    Mead, DG
    Stein, SK
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (01) : 303 - 309
  • [39] GENERATORS FOR THE ALGEBRA OF SYMMETRICAL POLYNOMIALS
    MEAD, DG
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (04): : 386 - 388
  • [40] THE CENTRAL POLYNOMIALS FOR THE GRASSMANN ALGEBRA
    Brandao, Antonio Pereira, Jr.
    Koshlukov, Plamen
    Krasilnikov, Alexei
    da Silva, Elida Alves
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 179 (01) : 127 - 144