THE HADAMARD OPERATOR NORM OF A CIRCULANT AND APPLICATIONS

被引:35
|
作者
MATHIAS, R
机构
关键词
HADAMARD PRODUCT; CIRCULANT; TRIANGULAR TRUNCATION; COMMUTATOR; CAUCHY-SCHWARZ INEQUALITY; MATRIX ABSOLUTE VALUE;
D O I
10.1137/0614080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Mn be the space of n x n complex matrices and let \\.\\infinity denote the spectral norm. Given matrices A = [a(ij)] and B = [b(ij)] of the same size, define their Hadamard product to be A . B = [a(ij)b(il)]. Define the Hadamard operator norm of A is-an-element-of M(n) to be \\\A\\\infinity = max {\\A . B\\infinity : \\B\\infinity less-than-or-equal-to 1}. It is shown that \\A\\infinity = tr\A\/n if and only if \A\ . I = \A*\ . I = (tr\A\/n)I. It is shown that (2) holds for generalized circulants and hence that the Hadamard operator norm of a generalized circulant can be computed easily. This allows us to compute or bound \\\[sign(j - i)n/i,j=1\\\infinity, \\\[lambda(i) - lambda(j))/(lambda(i) + lambda(j)]n/i,j=1\\\infinity, \\\T(n)\\\infinity, where T(n) is the n x n matrix with ones on and above the diagonal and zeros below, and related quantities. In each case the norms grow like log n. Using these results upper and lower bounds are obtained on quantities of the form sup{\\ \A\ - \B\ \\infinity : \\A - B\\infinity less-than-or-equal-to 1, A, B, is-an-element-of M(n)} and sup{\\ \A\B - B\A\ \\infinity : \\AB - BA\\infinity less-than-or-equal-to 1, A, B is-an-element-of M(n), A = A*} The authors also indicate the extent to which the results generalize to all unitarily invariant norms, characterize the case of equality in a matrix Cauchy-Schwarz Inequality, and give a counterexample to a conjecture involving Hadamard products.
引用
收藏
页码:1152 / 1167
页数:16
相关论文
共 50 条
  • [31] Bergman type operator on mixed norm spaces with applications
    Ren, GB
    Shi, JH
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1997, 18 (03) : 265 - 276
  • [32] On the norm of a Hilbert's type linear operator and applications
    Yang, Bicheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 529 - 541
  • [33] Applications of differential subordinations for norm estimates of an integral operator
    Dziok, Jacek
    Raina, Ravinder Krishna
    Sokol, Janusz
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) : 281 - 291
  • [34] Williamson type Hadamard matrices with circulant components
    Fitzpatrick, Patrick
    O'Keeffe, Henry
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [35] Hadamard matrices constructed by circulant and negacyclic matrices
    Xia, Tianbing
    Xia, Mingyuan
    Seberry, Jennifer
    Wu, Jing
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 34 : 105 - 116
  • [36] DETERMINANTAL PROPERTIES OF GENERALIZED CIRCULANT HADAMARD MATRICES
    Mitrouli, Marilena
    Turek, Ondrej
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 639 - 651
  • [37] The p-norm of circulant matrices
    Bouthat, Ludovick
    Khare, Apoorva
    Mashreghi, Javad
    Morneau-Guerin, Frederic
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 7176 - 7188
  • [38] CIRCULANT MATRICES: NORM, POWERS, AND POSITIVITY
    Lindner, Marko
    OPUSCULA MATHEMATICA, 2018, 38 (06) : 849 - 857
  • [39] Block-circulant complex Hadamard matrices
    Bruzda, W.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (05)
  • [40] μ-Norm of an Operator
    Treschev, D., V
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 310 (01) : 262 - 290