THE HADAMARD OPERATOR NORM OF A CIRCULANT AND APPLICATIONS

被引:35
|
作者
MATHIAS, R
机构
关键词
HADAMARD PRODUCT; CIRCULANT; TRIANGULAR TRUNCATION; COMMUTATOR; CAUCHY-SCHWARZ INEQUALITY; MATRIX ABSOLUTE VALUE;
D O I
10.1137/0614080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Mn be the space of n x n complex matrices and let \\.\\infinity denote the spectral norm. Given matrices A = [a(ij)] and B = [b(ij)] of the same size, define their Hadamard product to be A . B = [a(ij)b(il)]. Define the Hadamard operator norm of A is-an-element-of M(n) to be \\\A\\\infinity = max {\\A . B\\infinity : \\B\\infinity less-than-or-equal-to 1}. It is shown that \\A\\infinity = tr\A\/n if and only if \A\ . I = \A*\ . I = (tr\A\/n)I. It is shown that (2) holds for generalized circulants and hence that the Hadamard operator norm of a generalized circulant can be computed easily. This allows us to compute or bound \\\[sign(j - i)n/i,j=1\\\infinity, \\\[lambda(i) - lambda(j))/(lambda(i) + lambda(j)]n/i,j=1\\\infinity, \\\T(n)\\\infinity, where T(n) is the n x n matrix with ones on and above the diagonal and zeros below, and related quantities. In each case the norms grow like log n. Using these results upper and lower bounds are obtained on quantities of the form sup{\\ \A\ - \B\ \\infinity : \\A - B\\infinity less-than-or-equal-to 1, A, B, is-an-element-of M(n)} and sup{\\ \A\B - B\A\ \\infinity : \\AB - BA\\infinity less-than-or-equal-to 1, A, B is-an-element-of M(n), A = A*} The authors also indicate the extent to which the results generalize to all unitarily invariant norms, characterize the case of equality in a matrix Cauchy-Schwarz Inequality, and give a counterexample to a conjecture involving Hadamard products.
引用
收藏
页码:1152 / 1167
页数:16
相关论文
共 50 条
  • [21] Combinatorial properties of circulant Hadamard matrices
    Euler, Reinhardt
    Gallardo, Luis H.
    Rahavandrainy, Olivier
    PANORAMA OF MATHEMATICS: PURE AND APPLIED, 2016, 658 : 9 - 19
  • [22] THE SPECTRAL NORM OF A CIRCULANT MATRIX
    Merikoski, Jorma K.
    Haukkanen, Pentti
    Mattila, Mika
    Tossavainen, Timo
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (04): : 495 - 500
  • [23] HADAMARD MATRICES CONSTRUCTIBLE BY CIRCULANT SUBMATRICES
    YANG, CH
    MATHEMATICS OF COMPUTATION, 1971, 25 (113) : 181 - &
  • [24] ON THE NORM OF A GAUSSIAN CIRCULANT MATRICES
    MALLIAVIN, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (07): : 745 - 749
  • [25] Linear preservers of Hadamard circulant majorization
    G. Sankara Raju Kosuru
    Subhajit Saha
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 1033 - 1039
  • [26] INEQUALITIES ON THE SPECTRAL RADIUS AND THE OPERATOR NORM OF HADAMARD PRODUCTS OF POSITIVE OPERATORS ON SEQUENCE SPACES
    Drnovsek, Roman
    Peperko, Aljosa
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (04): : 800 - 814
  • [27] On a weighted Hermite-Hadamard inequality in operator variables with applications for weighted operator means
    Raissouli, Mustapha
    Tarik, Lahcen
    Chergui, Mohamed
    FILOMAT, 2024, 38 (17) : 5971 - 5982
  • [28] APPLICATIONS OF A CERTAIN LINEAR OPERATOR DEFINED BY A HADAMARD PRODUCT OR CONVOLUTION
    OWA, S
    SRIVASTAVA, HM
    SHEN, CY
    UTILITAS MATHEMATICA, 1988, 33 : 173 - 181
  • [29] Positive Definiteness of Functions with Applications to Operator Norm Inequalities
    Kosaki, Hideki
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 212 (997) : 1 - +
  • [30] BERGMAN TYPE OPERATOR ON MIXED NORM SPACES WITH APPLICATIONS
    REN GUANGBIN * SHI JIHUAI *
    ChineseAnnalsofMathematics, 1997, (03) : 2+4+6+8+10+12 - 14+16+