Data-Driven Modeling of a Commercial Photovoltaic Microinverter

被引:4
|
作者
Abbood, Hayder D. [1 ]
Benigni, Andrea [1 ]
机构
[1] Univ South Carolina, Columbia, SC 29208 USA
关键词
D O I
10.1155/2018/5280681
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a data-driven modeling (DDM) approach for static modeling of commercial photovoltaic (PV) microinverters. The proposed modeling approach handles all possible microinverter operating modes, including burst mode. No prior knowledge of internal components, structure, and control algorithm is assumed in developing the model. The approach is based on Artificial Neural Network (ANN) and Fast Fourier Transform (FFT). To generate the data used to train the model, a Power Hardware in the Loop (PHIL) approach is applied. Instantaneous inputs-outputs data are collected from the terminals of a commercial PV microinverter at time domain. Then, the collected data are converted to the frequency domain using Fast Fourier Transform(FFT). The ANNs that are the core of the DDM are developed in frequency domain. The outputs of the ANNs are then converted back to time domain for validation and use in system level simulation. The comparison between measured and simulated data validates the performance of the presented approach.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Data-driven modeling for drop size distributions
    Traverso T.
    Abadie T.
    Matar O.K.
    Magri L.
    [J]. Physical Review Fluids, 2023, 8 (10)
  • [22] Data-driven discourse modeling for semantic interpretation
    CamineroGil, J
    AlvarezCercadillo, J
    CrespoCasas, C
    TapiasMerino, D
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 401 - 404
  • [23] Data-Driven Modeling of Synaptic Transmission and Integration
    Rothman, Jason S.
    Silver, R. Angus
    [J]. COMPUTATIONAL NEUROSCIENCE, 2014, 123 : 305 - 350
  • [24] Experimental data-driven tumor modeling for chemotherapy
    Drexler, Daniel Andras
    Ferenci, Tamas
    Fueredi, Andras
    Szakacs, Gergely
    Kovacs, Levente
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 16245 - 16250
  • [25] Data-driven modeling and learning in science and engineering
    Montans, Francisco J.
    Chinesta, Francisco
    Gomez-Bombarelli, Rafael
    Kutz, J. Nathan
    [J]. COMPTES RENDUS MECANIQUE, 2019, 347 (11): : 845 - 855
  • [26] Dynamic Data-Driven Modeling of Pharmaceutical Processes
    Boukouvala, F.
    Muzzio, F. J.
    Ierapetritou, Marianthi G.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (11) : 6743 - 6754
  • [27] Data-driven Modeling and Simulation of Thermal Fuses
    Horn, Markus
    Brabetz, Ludwig
    Ayeb, Mohamed
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL SYSTEMS FOR AIRCRAFT, RAILWAY, SHIP PROPULSION AND ROAD VEHICLES & INTERNATIONAL TRANSPORTATION ELECTRIFICATION CONFERENCE (ESARS-ITEC), 2018,
  • [28] Interpretable data-driven modeling of hyperelastic membranes
    Salamatova, Victoria
    Liogky, Alexey
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2023, 39 (11)
  • [29] Data-Driven GENERIC Modeling of Poroviscoelastic Materials
    Ghnatios, Chady
    Alfaro, Iciar
    Gonzalez, David
    Chinesta, Francisco
    Cueto, Elias
    [J]. ENTROPY, 2019, 21 (12)
  • [30] Data-driven modeling for unsteady aerodynamics and aeroelasticity
    Kou, Jiaqing
    Zhang, Weiwei
    [J]. PROGRESS IN AEROSPACE SCIENCES, 2021, 125