Data-Driven Modeling of Synaptic Transmission and Integration

被引:15
|
作者
Rothman, Jason S. [1 ]
Silver, R. Angus [1 ]
机构
[1] UCL, Dept Neurosci Physiol & Pharmacol, London, England
来源
COMPUTATIONAL NEUROSCIENCE | 2014年 / 123卷
基金
欧洲研究理事会; 英国惠康基金;
关键词
SHORT-TERM PLASTICITY; RAPID VESICULAR RELEASE; VOLTAGE-DEPENDENT BLOCK; GRANULE CELL SYNAPSES; AUDITORY-NERVE FIBERS; NON-NMDA RECEPTORS; EXCITATORY SYNAPSES; TIME-COURSE; TRANSMITTER RELEASE; CEREBELLAR SYNAPSE;
D O I
10.1016/B978-0-12-397897-4.00004-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this chapter, we describe how to create mathematical models of synaptic transmission and integration. We start with a brief synopsis of the experimental evidence underlying our current understanding of synaptic transmission. We then describe synaptic transmission at a particular glutamatergic synapse in the mammalian cerebellum, the mossy fiber to granule cell synapse, since data from this well-characterized synapse can provide a benchmark comparison for how well synaptic properties are captured by different mathematical models. This chapter is structured by first presenting the simplest mathematical description of an average synaptic conductance waveform and then introducing methods for incorporating more complex synaptic properties such as nonlinear voltage dependence of ionotropic receptors, short-term plasticity, and stochastic fluctuations. We restrict our focus to excitatory synaptic transmission, but most of the modeling approaches discussed here can be equally applied to inhibitory synapses. Our data-driven approach will be of interest to those wishing to model synaptic transmission and network behavior in health and disease.
引用
收藏
页码:305 / 350
页数:46
相关论文
共 50 条
  • [1] Data-driven integration of hippocampal CA1 synaptic physiology in silico
    Ecker, Andras
    Romani, Armando
    Saray, Sara
    Kali, Szabolcs
    Migliore, Michele
    Falck, Joanne
    Lange, Sigrun
    Mercer, Audrey
    Thomson, Alex M.
    Muller, Eilif
    Reimann, Michael W.
    Ramaswamy, Srikanth
    [J]. HIPPOCAMPUS, 2020, 30 (11) : 1129 - 1145
  • [2] Is a More Data-driven Approach the Future of Tuberculosis Transmission Modeling?
    Zelner, Jon
    [J]. CLINICAL INFECTIOUS DISEASES, 2020, 70 (11) : 2403 - 2404
  • [3] Perspectives on the integration between first-principles and data-driven modeling
    Bradley, William
    Kim, Jinhyeun
    Kilwein, Zachary
    Blakely, Logan
    Eydenberg, Michael
    Jalvin, Jordan
    Laird, Carl
    Boukouvala, Fani
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2022, 166
  • [4] Modeling specular transmission of complex fenestration systems with data-driven BSDFs
    Ward, Gregory J.
    Wang, Taoning
    Geisler-Moroder, David
    Lee, Eleanor S.
    Grobe, Lars O.
    Wienold, Jan
    Jonsson, Jacob C.
    [J]. BUILDING AND ENVIRONMENT, 2021, 196
  • [5] Cooperative data-driven modeling
    Dekhovich, Aleksandr
    Turan, O. Taylan
    Yi, Jiaxiang
    Bessa, Miguel A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [6] Data-Driven Synthetic Modeling of Trees
    Zhang, Xiaopeng
    Li, Hongjun
    Dai, Mingrui
    Ma, Wei
    Quan, Long
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (09) : 1214 - 1226
  • [7] Data-driven modeling of acoustical instruments
    Schoner, B
    Cooper, C
    Douglas, C
    Gershenfed, N
    [J]. JOURNAL OF NEW MUSIC RESEARCH, 1999, 28 (02) : 81 - 89
  • [8] Data-Driven multiscale modeling in mechanics
    Karapiperis, K.
    Stainier, L.
    Ortiz, M.
    Andrade, J. E.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 147
  • [9] On the Data-Driven Modeling of Reactive Extrusion
    Ibanez, Ruben
    Casteran, Fanny
    Argerich, Clara
    Ghnatios, Chady
    Hascoet, Nicolas
    Ammar, Amine
    Cassagnau, Philippe
    Chinesta, Francisco
    [J]. FLUIDS, 2020, 5 (02)
  • [10] Data-driven modeling of power networks
    Safaee, Bita
    Gugercin, Serkan
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4236 - 4241