AN ASYMPTOTIC FORMULA FOR THE DISTRIBUTION OF THE MAXIMUM OF A GAUSSIAN PROCESS WITH STATIONARY INCREMENTS

被引:24
|
作者
BERMAN, SM
机构
关键词
D O I
10.2307/3213789
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:454 / 460
页数:7
相关论文
共 50 条
  • [41] On partial sums of a Gaussian sequence with stationary increments
    Choi, UJ
    Choi, YK
    Lee, BS
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (05) : 825 - 842
  • [42] BIPOWER VARIATION FOR GAUSSIAN PROCESSES WITH STATIONARY INCREMENTS
    Barndorff-Nielsen, Ole E.
    Manuel Corcuera, Jose
    Podolskij, Mark
    Woerner, Jeannette H. C.
    [J]. JOURNAL OF APPLIED PROBABILITY, 2009, 46 (01) : 132 - 150
  • [43] Power variation for Gaussian processes with stationary increments
    Barndorff-Nielsen, Ole E.
    Manuel Corcuera, Jose
    Podolskij, Mark
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (06) : 1845 - 1865
  • [44] DISTRIBUTION OF ABSOLUTE MAXIMUM OF A STATIONARY RANDOM PROCESS
    SHUKAYLO, VF
    [J]. RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1968, 13 (06): : 867 - &
  • [45] ASYMPTOTIC THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF THE MEMORY PARAMETER IN STATIONARY GAUSSIAN PROCESSES
    Lieberman, Offer
    Rosemarin, Roy
    Rousseau, Judith
    [J]. ECONOMETRIC THEORY, 2012, 28 (02) : 457 - 470
  • [46] Gaussian Process Regression for Maximum Entropy Distribution
    Sadr, Mohsen
    Torrilhon, Manuel
    Gorji, M. Hossein
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 418
  • [47] Semi-parametric estimation of the variogram scale parameter of a Gaussian process with stationary increments
    Azais, Jean-Marc
    Bachoc, Francois
    Lagnoux, Agnes
    Nguyen, Thi Mong Ngoc
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 842 - 882
  • [48] On Bahadur asymptotic efficiency of the maximum likelihood and quasi-maximum likelihood estimators in Gaussian stationary processes
    Kakizawa, Y
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 85 (01) : 29 - 44
  • [49] MAXIMAL PROCESS OF A PROCESS WITH STATIONARY, INDEPENDENT INCREMENTS
    FRISTEDT, BE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A398 - A398
  • [50] The role of the tail distribution in the asymptotic behaviour of stationary gaussian processes.
    Antonini, RG
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1997, 11B (02): : 287 - 295