Evaluating replicability of multiple linear regression results using the Jackknife technique

被引:1
|
作者
Bekiroglu, Nural [1 ]
Konyalioglu, Rana [2 ]
Karahan, Dilara [3 ]
机构
[1] Marmara Univ, Tip Fak, Biyoistat & Tibbi Bilisim Anabilim Dali, Istanbul, Turkey
[2] ARK Istatistiksel Danismanl, Istanbul, Turkey
[3] Fatih Sultan Mehmet Egitim & Arastirma Hastanesi, Psikiyatri Anabilim Dali, Istanbul, Turkey
来源
MARMARA MEDICAL JOURNAL | 2013年 / 26卷 / 02期
关键词
Jackknife technique; Replicability; Multiple regression analysis; Pseudo R-2;
D O I
10.5472/MMJ.2013.02499.1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Multiple linear regression analysis is a frequently used method, both in social sciences and health sciences. The question below becomes important when an estimation of Beta coefficients obtained from multiple linear regression analyses is applied to studies with small sample size. The question is, "Can we generalise Beta coefficients obtained regarding the whole population?". The aim of this study is to find the answer to this question by applying the Jackknife technique and review the relevant literature.
引用
收藏
页码:63 / 67
页数:5
相关论文
共 50 条
  • [1] Integrating Jackknife into the Theil-Sen Estimator in Multiple Linear Regression Model
    Zaman, Tolga
    Alakus, Kamil
    REVSTAT-STATISTICAL JOURNAL, 2023, 21 (01) : 97 - 114
  • [2] Comparison of bootstrap and jackknife variance estimators in linear regression: Second order results
    Bose, A
    Chatterjee, S
    STATISTICA SINICA, 2002, 12 (02) : 575 - 598
  • [3] Detecting change point in linear regression using jackknife empirical likelihood
    Wu, Xinqi
    Zhang, Sanguo
    Zhang, Qingzhao
    Ma, Shuangge
    STATISTICS AND ITS INTERFACE, 2016, 9 (01) : 113 - 122
  • [4] EXTENDED JACKKNIFE ESTIMATES IN LINEAR OR NONLINEAR-REGRESSION
    BUNKE, O
    STATISTICS, 1993, 25 (01) : 47 - 61
  • [5] ROBUST JACKKNIFE RIDGE REGRESSION TO COMBAT MULTICOLLINEARITY AND HIGH LEVERAGE POINTS IN MULTIPLE LINEAR REGRESSIONS
    Alguraibawi, Mohammed
    Midi, Habshah
    Rana, Sohel
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2015, 49 (04): : 305 - 322
  • [6] JACKKNIFE INFERENCE FOR HETEROSCEDASTIC LINEAR-REGRESSION MODELS
    SHAO, J
    RAO, JNK
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1993, 21 (04): : 377 - 395
  • [7] Use of double cross-validation and bootstrap methods to estimate replicability of results of multiple regression
    Ang, RP
    PERCEPTUAL AND MOTOR SKILLS, 1998, 86 (03) : 1143 - 1152
  • [8] Understanding the Results of Multiple Linear Regression: Beyond Standardized Regression Coefficients
    Nimon, Kim F.
    Oswald, Frederick L.
    ORGANIZATIONAL RESEARCH METHODS, 2013, 16 (04) : 650 - 674
  • [9] On the jackknife Kibria-Lukman estimator for the linear regression model
    Ugwuowo, Fidelis Ifeanyi
    Oranye, Henrietta Ebele
    Arum, Kingsley Chinedu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (12) : 6116 - 6128
  • [10] Evaluating the sustainable development of agriculture based on multiple linear regression
    Li, Qing-Xue
    Wu, Hua-Rui
    Information Technology Journal, 2013, 12 (21) : 6363 - 6366