JACKKNIFE INFERENCE FOR HETEROSCEDASTIC LINEAR-REGRESSION MODELS

被引:29
|
作者
SHAO, J
RAO, JNK
机构
[1] UNIV OTTAWA,DEPT MATH,OTTAWA K1N 6N5,ONTARIO,CANADA
[2] CARLETON UNIV,DEPT MATH & STAT,OTTAWA K1S 5B2,ON,CANADA
关键词
ASYMPTOTIC CONSISTENCY; DELTA-METHOD; DELETE-GROUP JACKKNIFE; ORDINARY LEAST SQUARES; WEIGHTED LEAST SQUARES; WITHIN-GROUP CORRELATIONS;
D O I
10.2307/3315702
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inference on the regression parameters in a heteroscedastic linear regression model with replication is considered, using either the ordinary least-squares (OLS) or the weighted least-squares (WLS) estimator. A delete-group jackknife method is shown to produce consistent variance estimators irrespective of within-group correlations, unlike the delete-one jackknife variance estimators or those based on the customary delta-method assuming within-group independence. Finite-sample properties of the delete-group variance estimators and associated confidence intervals are also studied through simulation.
引用
收藏
页码:377 / 395
页数:19
相关论文
共 50 条