Evaluating replicability of multiple linear regression results using the Jackknife technique

被引:1
|
作者
Bekiroglu, Nural [1 ]
Konyalioglu, Rana [2 ]
Karahan, Dilara [3 ]
机构
[1] Marmara Univ, Tip Fak, Biyoistat & Tibbi Bilisim Anabilim Dali, Istanbul, Turkey
[2] ARK Istatistiksel Danismanl, Istanbul, Turkey
[3] Fatih Sultan Mehmet Egitim & Arastirma Hastanesi, Psikiyatri Anabilim Dali, Istanbul, Turkey
来源
MARMARA MEDICAL JOURNAL | 2013年 / 26卷 / 02期
关键词
Jackknife technique; Replicability; Multiple regression analysis; Pseudo R-2;
D O I
10.5472/MMJ.2013.02499.1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Multiple linear regression analysis is a frequently used method, both in social sciences and health sciences. The question below becomes important when an estimation of Beta coefficients obtained from multiple linear regression analyses is applied to studies with small sample size. The question is, "Can we generalise Beta coefficients obtained regarding the whole population?". The aim of this study is to find the answer to this question by applying the Jackknife technique and review the relevant literature.
引用
收藏
页码:63 / 67
页数:5
相关论文
共 50 条
  • [41] Jackknife-After-Bootstrap Method for Detection of Influential Observations in Linear Regression Models
    Beyaztas, Ufuk
    Alin, Aylin
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (06) : 1256 - 1267
  • [42] Development of Predictive Maintenance Interface using Multiple Linear Regression
    Abbasi, T.
    Lim, King Hann
    Rosli, N. S.
    Ismail, I.
    Ibrahim, R.
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEM (ICIAS 2018) / WORLD ENGINEERING, SCIENCE & TECHNOLOGY CONGRESS (ESTCON), 2018,
  • [43] Streamflow Forecasting at Ungauged Sites using Multiple Linear Regression
    Badyalina, Basri
    Shabri, Ani
    MATEMATIKA, 2013, 29 (01) : 67 - 75
  • [44] Using multiple linear regression model to estimate thunderstorm activity
    Suparta, W.
    Putro, W. S.
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND DIGITAL APPLICATIONS, 2017, 185
  • [45] Weibull and lognormal Taguchi analysis using multiple linear regression
    Pina-Monarrez, Manuel R.
    Ortiz-Yanez, Jesus F.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2015, 144 : 244 - 253
  • [46] Interaction Hypothesis Examination Using Multiple Linear Regression Analysis
    Kirchmann, Helmut
    PSYCHOTHERAPIE PSYCHOSOMATIK MEDIZINISCHE PSYCHOLOGIE, 2013, 63 (12) : 493 - 496
  • [47] Unbiased Weibull capabilities indices using multiple linear regression
    Pina-Monarrez, Manuel R.
    Baro-Tijerina, Manuel
    Ortiz-Yancz, Jesus F.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2017, 33 (08) : 1915 - 1920
  • [48] Sample sizes when using multiple linear regression for prediction
    Knofczynski, Gregory T.
    Mundfrom, Daniel
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2008, 68 (03) : 431 - 442
  • [49] Conditional Weibull Control Charts Using Multiple Linear Regression
    Pina-Monarrez, Manuel R.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2017, 33 (04) : 785 - 791
  • [50] Alveolar pressure monitoring using multiple linear regression analysis
    Muramatsu, K
    Yukitake, K
    Nakamura, M
    Matsumoto, I
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1999, 159 (03) : A827 - A827