NON-HERMITIAN QUANTUM DYNAMICS

被引:39
|
作者
BAKER, HC [1 ]
SINGLETON, RL [1 ]
机构
[1] BEREA COLL, DEPT PHYS, BEREA, KY 40404 USA
来源
PHYSICAL REVIEW A | 1990年 / 42卷 / 01期
关键词
D O I
10.1103/PhysRevA.42.10
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An algorithm previously obtained for complex-energy modal probabilities in non-Hermitian quantum dynamics is generalized to determine expectation values for arbitrary observables. When cast in conventional form, the formalism including the generalized algorithms appears as a natural generalization of conventional quantum theory, in that conventional quantum theory obtains in the continuous Hermitian limit. © 1990 The American Physical Society.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [1] Non-Hermitian dynamics in the quantum Zeno limit
    Kozlowski, W.
    Caballero-Benitez, S. F.
    Mekhov, I. B.
    [J]. PHYSICAL REVIEW A, 2016, 94 (01)
  • [2] Quantum dynamics on a lossy non-Hermitian lattice*
    Wang, Li
    Liu, Qing
    Zhang, Yunbo
    [J]. CHINESE PHYSICS B, 2021, 30 (02)
  • [3] Quantum dynamics on a lossy non-Hermitian lattice
    王利
    刘青
    张云波
    [J]. Chinese Physics B, 2021, 30 (02) : 81 - 87
  • [4] Quantum Jumps in the Non-Hermitian Dynamics of a Superconducting Qubit
    Chen, Weijian
    Abbasi, Maryam
    Joglekar, Yogesh N.
    Murch, Kater W.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (14)
  • [5] Classical and quantum dynamics in the (non-Hermitian) Swanson oscillator
    Graefe, Eva-Maria
    Korsch, Hans Juergen
    Rush, Alexander
    Schubert, Roman
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (05)
  • [6] Non-Hermitian bulk–boundary correspondence in quantum dynamics
    Lei Xiao
    Tianshu Deng
    Kunkun Wang
    Gaoyan Zhu
    Zhong Wang
    Wei Yi
    Peng Xue
    [J]. Nature Physics, 2020, 16 : 761 - 766
  • [7] Non-Hermitian dynamics without dissipation in quantum systems
    Wang, Yu-Xin
    Clerk, A. A.
    [J]. PHYSICAL REVIEW A, 2019, 99 (06)
  • [8] Comparing Hermitian and Non-Hermitian Quantum Electrodynamics
    Southall, Jake
    Hodgson, Daniel
    Purdy, Robert
    Beige, Almut
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [9] Non-Hermitian quantum rings
    Longhi, Stefano
    [J]. PHYSICAL REVIEW A, 2013, 88 (06):
  • [10] Non-hermitian quantum thermodynamics
    Bartłomiej Gardas
    Sebastian Deffner
    Avadh Saxena
    [J]. Scientific Reports, 6