Non-hermitian quantum thermodynamics

被引:0
|
作者
Bartłomiej Gardas
Sebastian Deffner
Avadh Saxena
机构
[1] Los Alamos National Laboratory,Theoretical Division
[2] Institute of Physics,undefined
[3] University of Silesia,undefined
[4] Center for Nonlinear Studies,undefined
[5] Los Alamos National Laboratory,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.
引用
收藏
相关论文
共 50 条
  • [1] Non-hermitian quantum thermodynamics
    Gardas, Bartlomiej
    Deffner, Sebastian
    Saxena, Avadh
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [2] Toward non-Hermitian quantum statistical thermodynamics
    Bebiano, N.
    da Providencia, J.
    da Providencia, J. P.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (02)
  • [3] Non-Hermitian quantum rings
    Longhi, Stefano
    [J]. PHYSICAL REVIEW A, 2013, 88 (06):
  • [4] Comparing Hermitian and Non-Hermitian Quantum Electrodynamics
    Southall, Jake
    Hodgson, Daniel
    Purdy, Robert
    Beige, Almut
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [5] NON-HERMITIAN QUANTUM DYNAMICS
    BAKER, HC
    SINGLETON, RL
    [J]. PHYSICAL REVIEW A, 1990, 42 (01): : 10 - 17
  • [6] Non-Hermitian quantum fractals
    Sun, Junsong
    Li, Chang-An
    Guo, Qingyang
    Zhang, Weixuan
    Feng, Shiping
    Zhang, Xiangdong
    Guo, Huaiming
    Trauzettel, Björn
    [J]. Physical Review B, 2024, 110 (20)
  • [7] Relating non-Hermitian and Hermitian quantum systems at criticality
    Hsieh, Chang -Tse
    Chang, Po-Yao
    [J]. SCIPOST PHYSICS CORE, 2023, 6 (03):
  • [8] Hermitian and non-Hermitian description of quantum wave propagation
    Villavicencio, J.
    Romo, R.
    Munoz-Rodriguez, M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (10)
  • [9] A quantum system with a non-Hermitian Hamiltonian
    Bebiano, N.
    da Providencia, J.
    Nishiyama, S.
    da Providencia, J. P.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [10] Relativistic non-Hermitian quantum mechanics
    Jones-Smith, Katherine
    Mathur, Harsh
    [J]. PHYSICAL REVIEW D, 2014, 89 (12):