Non-Hermitian bulk–boundary correspondence in quantum dynamics

被引:28
|
作者
Lei Xiao
Tianshu Deng
Kunkun Wang
Gaoyan Zhu
Zhong Wang
Wei Yi
Peng Xue
机构
[1] Beijing Computational Science Research Center,CAS Key Laboratory of Quantum Information
[2] University of Science and Technology of China,undefined
[3] Institute for Advanced Study,undefined
[4] Tsinghua University,undefined
[5] CAS Center for Excellence in Quantum Information and Quantum Physics,undefined
来源
Nature Physics | 2020年 / 16卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bulk–boundary correspondence, a guiding principle in topological matter, relates robust edge states to bulk topological invariants. Its validity, however, has so far been established only in closed systems. Recent theoretical studies indicate that this principle requires fundamental revisions for a wide range of open systems with effective non-Hermitian Hamiltonians. Therein, the intriguing localization of nominal bulk states at boundaries, known as the non-Hermitian skin effect, suggests a non-Bloch band theory in which non-Bloch topological invariants are defined in generalized Brillouin zones, leading to a general bulk–boundary correspondence beyond the conventional framework. Here, we experimentally observe this fundamental non-Hermitian bulk–boundary correspondence in discrete-time non-unitary quantum-walk dynamics of single photons. We demonstrate pronounced photon localizations near boundaries even in the absence of topological edge states, thus confirming the non-Hermitian skin effect. Facilitated by our experimental scheme of edge-state reconstruction, we directly measure topological edge states, which are in excellent agreement with the non-Bloch topological invariants. Our work unequivocally establishes the non-Hermitian bulk–boundary correspondence as a general principle underlying non-Hermitian topological systems and paves the way for a complete understanding of topological matter in open systems.
引用
收藏
页码:761 / 766
页数:5
相关论文
共 50 条
  • [1] Non-Hermitian bulk-boundary correspondence in quantum dynamics
    Xiao, Lei
    Deng, Tianshu
    Wang, Kunkun
    Zhu, Gaoyan
    Wang, Zhong
    Yi, Wei
    Xue, Peng
    [J]. NATURE PHYSICS, 2020, 16 (07) : 761 - +
  • [2] Bulk-Boundary Correspondence in a Non-Hermitian Chern Insulator
    Takane, Yositake
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (03)
  • [3] Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits
    T. Helbig
    T. Hofmann
    S. Imhof
    M. Abdelghany
    T. Kiessling
    L. W. Molenkamp
    C. H. Lee
    A. Szameit
    M. Greiter
    R. Thomale
    [J]. Nature Physics, 2020, 16 : 747 - 750
  • [4] Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems
    Kunst, Flore K.
    Edvardsson, Elisabet
    Budich, Jan Carl
    Bergholtz, Emil J.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (02)
  • [5] Bulk-Boundary Correspondence in a Non-Hermitian Quantum Spin-Hall Insulator
    Ishii, Chihiro
    Takane, Yositake
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (12)
  • [6] Bulk-boundary correspondence in disordered non-Hermitian systems
    Zhang, Zhi-Qiang
    Liu, Hongfang
    Liu, Haiwen
    Jiang, Hua
    Xie, X. C.
    [J]. SCIENCE BULLETIN, 2023, 68 (02) : 157 - 164
  • [7] Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk–boundary correspondence
    杨孝森
    曹阳
    翟云佳
    [J]. Chinese Physics B, 2022, (01) : 65 - 70
  • [8] Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-boundary correspondence
    Yang, Xiaosen
    Cao, Yang
    Zhai, Yunjia
    [J]. CHINESE PHYSICS B, 2022, 31 (01)
  • [9] Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits
    Helbig, T.
    Hofmann, T.
    Imhof, S.
    Abdelghany, M.
    Kiessling, T.
    Molenkamp, L. W.
    Lee, C. H.
    Szameit, A.
    Greiter, M.
    Thomale, R.
    [J]. NATURE PHYSICS, 2020, 16 (07) : 747 - +
  • [10] Non-Hermitian bulk-boundary correspondence in a periodically driven system
    Cao, Yang
    Li, Yang
    Yang, Xiaosen
    [J]. PHYSICAL REVIEW B, 2021, 103 (07)