Bulk-boundary correspondence in disordered non-Hermitian systems

被引:17
|
作者
Zhang, Zhi-Qiang [1 ,2 ]
Liu, Hongfang [1 ,2 ]
Liu, Haiwen [3 ]
Jiang, Hua [1 ,2 ]
Xie, X. C. [4 ,5 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Univ, Inst Adv Study, Suzhou 215006, Peoples R China
[3] Beijing Normal Univ, Ctr Adv Quantum Studies, Dept Phys, Beijing 100875, Peoples R China
[4] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[5] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Disorder effect; Bulk -boundary correspondence; Non -Hermitian skin effect; Generalized Brillouin zone;
D O I
10.1016/j.scib.2023.01.002
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The bulk-boundary correspondence (BBC) refers to the consistency between eigenvalues calculated under open and periodic boundary conditions. This consistency can be destroyed in systems with non -Hermitian skin effect (NHSE). In spite of the great success of the generalized Brillouin zone (GBZ) theory in clean non-Hermitian systems, the applicability of GBZ theory is questionable when the translational symmetry is broken. Thus, it is of great value to rebuild the BBC for disordered samples, which extends the application of GBZ theory in non-Hermitian systems. Here, we propose a scheme to reconstruct BBC, which can be regarded as the solution of an optimization problem. By solving the optimization problem analytically, we reconstruct the BBC and obtain the modified GBZ theory in several prototypical disor-dered non-Hermitian models. The modified GBZ theory provides a precise description of the fantastic NHSE, which predicts the asynchronous-disorder-reversed NHSE's directions. (c) 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
下载
收藏
页码:157 / 164
页数:8
相关论文
共 50 条
  • [1] Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems
    Kunst, Flore K.
    Edvardsson, Elisabet
    Budich, Jan Carl
    Bergholtz, Emil J.
    PHYSICAL REVIEW LETTERS, 2018, 121 (02)
  • [2] Non-Hermitian bulk-boundary correspondence in quantum dynamics
    Xiao, Lei
    Deng, Tianshu
    Wang, Kunkun
    Zhu, Gaoyan
    Wang, Zhong
    Yi, Wei
    Xue, Peng
    NATURE PHYSICS, 2020, 16 (07) : 761 - +
  • [3] Bulk-Boundary Correspondence in a Non-Hermitian Chern Insulator
    Takane, Yositake
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (03)
  • [4] Generalized bulk-boundary correspondence in periodically driven non-Hermitian systems
    Ji, Xiang
    Yang, Xiaosen
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (24)
  • [5] Bulk-boundary correspondence in non-Hermitian systems: stability analysis for generalized boundary conditions
    Rebekka Koch
    Jan Carl Budich
    The European Physical Journal D, 2020, 74
  • [6] Non-Hermitian bulk-boundary correspondence in a periodically driven system
    Cao, Yang
    Li, Yang
    Yang, Xiaosen
    PHYSICAL REVIEW B, 2021, 103 (07)
  • [7] Bulk-boundary correspondence in non-Hermitian systems: stability analysis for generalized boundary conditions
    Koch, Rebekka
    Budich, Jan Carl
    EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (04):
  • [8] Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits
    Helbig, T.
    Hofmann, T.
    Imhof, S.
    Abdelghany, M.
    Kiessling, T.
    Molenkamp, L. W.
    Lee, C. H.
    Szameit, A.
    Greiter, M.
    Thomale, R.
    NATURE PHYSICS, 2020, 16 (07) : 747 - +
  • [9] Bulk-Boundary Correspondence for Non-Hermitian Hamiltonians via Green Functions
    Zirnstein, Heinrich-Gregor
    Refael, Gil
    Rosenow, Bernd
    PHYSICAL REVIEW LETTERS, 2021, 126 (21)
  • [10] Generalized Bloch band theory for non-Hermitian bulk-boundary correspondence
    Imura, Ken-Ichiro
    Takane, Yositake
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (12):