Nil-quasipolar rings

被引:0
|
作者
Gurgun, Orhan [1 ]
Halicioglu, Sait [1 ]
Harmanci, Abdullah [2 ]
机构
[1] Ankara Univ, Dept Math, Ankara, Turkey
[2] Hacettepe Univ, Dept Maths, Ankara, Turkey
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2014年 / 20卷 / 01期
关键词
Nil-quasipolar matrix; Quasipolar ring; Strongly nil-clean ring; Matrix ring; Characteristic polynomial;
D O I
10.1007/s40590-014-0005-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an arbitrary ring. An element a is an element of R is nil-quasipolar if there exists p(2) = p is an element of comm(2)(a) such that a + p is an element of Nil(R); R is called nil-quasipolar in case each of its elements is nil-quasipolar. In this paper, we study nil-quasipolar rings over commutative local rings. We determine the conditions under which a single 2x2 matrix over a commutative local ring is nil-quasipolar. It is shown that A is an element of M-2(R) is nil-quasipolar if and only if A is an element of Nil(M-2(R)) or A + I-2 is an element of Nil (M-2(R)) or the characteristic polynomial chi(A) has a root in Nil(R) and a root in -1 + Nil(R). Wegive some equivalent characterizations of nil-quasipolar rings through the endomorphism ring of a module. Among others we prove that every nil-quasipolar ring has stable range one.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
  • [31] Ideally nil clean rings
    Gorman, Alexi Block
    Diesl, Alexander
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 4788 - 4799
  • [32] Generalizing nil clean rings
    Danchev, Peter
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2018, 25 (01) : 13 - 28
  • [33] On Nil-Symmetric Rings
    Chakraborty, Uday Shankar
    Das, Krishnendu
    JOURNAL OF MATHEMATICS, 2014, 2014
  • [34] ON NIL-SEMICOMMUTATIVE RINGS
    Mohammadi, R.
    Moussavi, A.
    Zahiri, M.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2012, 11 : 20 - 37
  • [35] ON NIL SKEW ARMENDARIZ RINGS
    Habibi, M.
    Moussavi, A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2012, 5 (02)
  • [36] COMPACT NIL-RINGS
    URSUL, MI
    MATHEMATICAL NOTES, 1984, 36 (5-6) : 919 - 922
  • [37] On strongly nil clean rings
    Chen, Huanyin
    Sheibani, Marjan
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1719 - 1726
  • [38] Commutative rings and modules that are Nil*-coherent or special Nil*-coherent
    Alaoui Ismaili, Karima
    Dobbs, David E.
    Mahdou, Najib
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (10)
  • [39] Nil-clean and strongly nil-clean rings
    Kosan, M. Tamer
    Wang, Zhou
    Zhou, Yiqiang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (02) : 633 - 646
  • [40] On Primitive Ideals in Polynomial Rings over Nil Rings
    Agata Smoktunowicz
    Algebras and Representation Theory, 2005, 8 : 69 - 73