ON NIL SKEW ARMENDARIZ RINGS

被引:5
|
作者
Habibi, M. [1 ]
Moussavi, A. [1 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, POB 14115-134, Tehran, Iran
关键词
Nil-Armendariz rings; NI rings; 2-primal rings;
D O I
10.1142/S1793557112500179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Antoine [Nilpotent elements and Armendariz rings, J. Algebra 319 (2008) 3128-3140] studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. When the set of nilpotent elements of a ring R with an alpha-condition, namely alpha-compatibility, forms an ideal, we observe that R satisfies a nil Armendariz-type property, in the context of Ore extension R[x; alpha, delta]. For a 2-primal ring R with a derivation delta, R[x] is nil delta-skew Armendariz, and for a 2-primal ring R, R is nil alpha-skew Armendariz if and only if R[x] is nil alpha-skew Armendariz, where a is an endomorphism of R with alpha(k) = id(R), for some positive integer k. Moreover, we prove that a ring R is nil (alpha, delta)-skew Armendariz if and only if the n-by-n skew triangular matrix ring T-n(R, sigma) is nil (alpha, delta)-skew Armendariz, for each endomorphism sigma, with sigma(1) = 1. A rich source of rings R, for which R[x] is nil (alpha, delta)-skew Armendariz, is provided.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Nil-Armendariz Condition on Skew Generalized Power Series Rings
    Raoufeh Manaviyat
    Mohammad Habibi
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 419 - 428
  • [2] Nil-Armendariz Condition on Skew Generalized Power Series Rings
    Manaviyat, Raoufeh
    Habibi, Mohammad
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A2): : 419 - 428
  • [3] On skew Armendariz rings
    Hong, CY
    Kim, NK
    Kwak, TK
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (01) : 103 - 122
  • [4] ON (α, δ)-skew Armendariz rings
    Moussavi, A
    Hashemi, E
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (02) : 353 - 363
  • [5] On skew Armendariz rings and rigid rings
    Chen, Weixing
    Tong, Wenting
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (02): : 341 - 353
  • [6] A GENERALIZATION OF NIL-ARMENDARIZ RINGS
    Habibi, Mohammad
    Manaviyat, Raoufeh
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (06)
  • [7] ON WEAKENED (α, δ)-SKEW ARMENDARIZ RINGS
    Farahani, Alireza Majdabadi
    Maghasedi, Mohammad
    Heydari, Farideh
    Tavallaee, Hamidagha
    MATHEMATICA BOHEMICA, 2022, 147 (02): : 187 - 200
  • [8] On partial skew Armendariz rings
    Cortes, Wagner
    ALGEBRA & DISCRETE MATHEMATICS, 2011, 11 (01): : 23 - 45
  • [9] On Skew Armendariz Matrix Rings
    Gang YANGZhong Kui LIUYan Jun WANG School of MathematicsPhysics and Software EngineeringLanzhou Jiaotong UniversityGansu PRChinaDepartment of MathematicsNorthwest Normal UniversityGansu PRChina
    数学研究与评论, 2010, 30 (06) : 1055 - 1060
  • [10] WEAK α-SKEW ARMENDARIZ RINGS
    Zhang, Cuiping
    Chen, Jianlong
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (03) : 455 - 466