Solutions of Nabla Fractional Difference Equations Using N-Transforms

被引:17
|
作者
Mohan, J. Jagan [1 ]
Deekshitulu, G. V. S. R. [2 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad Campus, Hyderabad 500078, Andhra Pradesh, India
[2] JNTU Kakinada, Dept Math, Kakinada 533003, Andhra Pradesh, India
关键词
Fractional difference; Caputo type; Exponential order; N-transform; Discrete Mittag-Leffler function;
D O I
10.1007/s40304-014-0027-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we present some important properties of N-transform, which is the Laplace transform for the nabla derivative on the time scale of integers (Bohner and Peterson in Dynamic equations on time scales, Birkhauser, Boston, 2001; Advances in dynamic equations on time scales, Birkhauser, Boston, 2002). We obtain the N-transform of nabla fractional sums and differences and then apply this transform to solve some nabla fractional difference equations with initial value problems. Finally, using N-transforms, we prove that discrete Mittag-Leffler function is the eigen function of Caputo type nabla fractional difference operator del(alpha).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Optimal Solutions for Non-consistent Singular Linear Systems of Fractional Nabla Difference Equations
    Ioannis K. Dassios
    Circuits, Systems, and Signal Processing, 2015, 34 : 1769 - 1797
  • [22] Stability and Robustness of Singular Systems of Fractional Nabla Difference Equations
    Dassios, Ioannis K.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (01) : 49 - 64
  • [23] Duality of singular linear systems of fractional nabla difference equations
    Dassios, Ioannis K.
    Baleanu, Dumitru I.
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (14) : 4180 - 4195
  • [24] Hyers-Ulam Stability of Fractional Nabla Difference Equations
    Jonnalagadda, Jagan Mohan
    INTERNATIONAL JOURNAL OF ANALYSIS, 2016,
  • [25] Discrete fractional Bihari inequality and uniqueness theorem of solutions of nabla fractional difference equations with non-Lipschitz nonlinearities
    Wang, Mei
    Jia, Baoguo
    Chen, Churong
    Zhu, Xiaojuan
    Du, Feifei
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 376
  • [26] Bounded Non-oscillatory Solutions of Nabla Forced Fractional Difference Equations with Positive and Negative Terms
    Alzabut, J.
    Grace, S. R.
    Jonnalagadda, J. M.
    Thandapani, E.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
  • [27] Bounded Non-oscillatory Solutions of Nabla Forced Fractional Difference Equations with Positive and Negative Terms
    J. Alzabut
    S. R. Grace
    J. M. Jonnalagadda
    E. Thandapani
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [28] Stability analysis for a class of nabla (q, h)-fractional difference equations
    Liu, Xiang
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (02) : 664 - 687
  • [29] Data Dependence and Existence and Uniqueness for Hilfer Nabla Fractional Difference Equations
    Gopal, N. S.
    Jonnalagadda, Jagan Mohan
    Alzabut, Jehad
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 780 - 796
  • [30] MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS
    Eloe, Paul
    Jonnalagadda, Jaganmohan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 977 - 992