Differential equations and Sobolev orthogonality

被引:5
|
作者
Jung, IH
Kwon, KH
Lee, DW
Littlejohn, LL
机构
[1] KOREA ADV INST SCI & TECHNOL,DEPT MATH,YUSONG KU,TAEJON 305701,SOUTH KOREA
[2] UTAH STATE UNIV,DEPT MATH & STAT,LOGAN,UT 84322
关键词
spectral differential equations; Sobolev orthogonal polynomials; symmetrizability of differential operator;
D O I
10.1016/0377-0427(95)00111-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider (Sobolev) orthogonal polynomials which are orthogonal relative to a Sobolev bilinear form integral(R) p(x)q(x)d mu(x) + integral(R) p'(x)q'd nu(x), where d mu(x) and d nu(x) are signed Borel measures with finite moments. We give necessary and sufficient conditions under which such orthogonal polynomials satisfy a linear spectral differential equation with polynomial coefficients. We then find a sufficient condition under which such a differential equation is symmetrizable. These results can be applied to Sobolev-Laguerre polynomials found by Koekoek and Meijer.
引用
下载
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [1] Sobolev orthogonality of polynomial solutions of second-order partial differential equations
    Juan C. García-Ardila
    Misael E. Marriaga
    Computational and Applied Mathematics, 2023, 42
  • [2] Sobolev orthogonality of polynomial solutions of second-order partial differential equations
    Garcia-Ardila, Juan C.
    Marriaga, Misael E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [3] ORTHOGONALITY AND DIFFERENTIAL EQUATIONS
    DUTTA, M
    BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY, 1971, 63 (03): : 143 - &
  • [4] Differential properties for Sobolev orthogonality on the unit circle
    Berriochoa, E
    Cachafeiro, A
    Marcellán, F
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) : 231 - 239
  • [5] QUASI-ORTHOGONALITY AND DIFFERENTIAL-EQUATIONS
    RONVEAUX, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 29 (02) : 243 - 248
  • [6] Ordinary Differential Equations and Sobolev Gradients
    Neuberger, J. W.
    SOBOLEV GRADIENTS AND DIFFERENTIAL EQUATIONS, SECOND EDITION, 2010, 1670 : 53 - 55
  • [7] SOBOLEV GRADIENTS FOR DIFFERENTIAL ALGEBRAIC EQUATIONS
    Nittka, Robin
    Sauter, Manfred
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [8] Hermite Interpolation and Sobolev Orthogonality
    Esther M. García-Caballero
    Teresa E. Pérez
    Miguel A. Piñar
    Acta Applicandae Mathematica, 2000, 61 : 87 - 99
  • [9] Hermite interpolation and Sobolev orthogonality
    García-Caballero, EM
    Pérez, TE
    Piñar, MA
    ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) : 87 - 99
  • [10] Linear interpolation and Sobolev orthogonality
    Moreno, Samuel G.
    Garcia-Caballero, Esther M.
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 35 - 48