Sobolev orthogonality of polynomial solutions of second-order partial differential equations

被引:0
|
作者
Juan C. García-Ardila
Misael E. Marriaga
机构
[1] Universidad Politécnica de Madrid,Departamento de Matemática Aplicada a la Ingeniería Industrial
[2] Universidad Rey Juan Carlos (Spain),Departamento de Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica
来源
关键词
Bivariate orthogonal polynomials; Sobolev orthogonal polynomials; Primary 42C05; 33C50;
D O I
暂无
中图分类号
学科分类号
摘要
Given a second-order partial differential operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}$$\end{document} with nonzero polynomial coefficients of degree at most 2, and a Sobolev bilinear form (P,Q)S=∑i=0N∑j=0iu(i,j),∂xi-j∂yjP∂xi-j∂yjQ,N⩾0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (P,Q)_S\,=\,\sum _{i=0}^N\sum _{j=0}^i\left\langle {\textbf{u}}^{(i,j)}, \partial _x^{i-j}\partial _y^jP\,\,\partial _x^{i-j}\partial _y^{j}Q\right\rangle , \quad N\geqslant 0, \end{aligned}$$\end{document}where u(i,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{u}}^{(i,j)}$$\end{document}, 0⩽j⩽i⩽N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\leqslant j \leqslant i \leqslant N$$\end{document}, are linear functionals defined on the space of bivariate polynomials, we study the orthogonality of the polynomial solutions of the partial differential equation L[p]=λn,mp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}[p]=\lambda _{n,m}\,p$$\end{document} with respect to (·,·)S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\cdot ,\cdot )_S$$\end{document}, where λn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{n,m}$$\end{document} are eigenvalue parameters depending on the total and partial degree of the solutions. We show that the linear functionals in the bilinear form must satisfy Pearson equations related to the coefficients of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}$$\end{document}. Therefore, we also study solutions of the Pearson equations that can be obtained from univariate moment functionals. In fact, the involved univariate functionals must satisfy Pearson equations in one variable. Moreover, we study polynomial solutions of L[p]=λn,mp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}[p]=\lambda _{n,m}\,p$$\end{document} obtained from univariate sequences of polynomials satisfying second-order ordinary differential equations.
引用
收藏
相关论文
共 50 条