On Sobolev bilinear forms and polynomial solutions of second-order differential equations

被引:3
|
作者
Garcia-Ardila, J. C. [1 ]
Marriaga, M. E. [2 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada & Ingn Ind, Calle Jose Gutierrez Abascal 2, Madrid 28006, Spain
[2] Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Mostoles, Spain
关键词
Classical orthogonal polynomials; Sobolev orthogonal polynomials; Nonstandard parameters; ORTHOGONAL POLYNOMIALS;
D O I
10.1007/s13398-021-01137-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a linear second-order differential operator L equivalent to phi D-2 + psi D with non zero polynomial coefficients of degree atmost 2, a sequence of real numbers lambda(n), n >= 0, and a Sobolev bilinear form B(p, q) = Sigma(N)(k=0) < u(k), p((k)) q((k))>, N >= 0, where u(k), 0 <= k <= N, are linear functionals defined on polynomials, we study the orthogonality of the polynomial solutions of the differential equation L[y] = lambda(n) y with respect to B. We show that such polynomials are orthogonal with respect to B if the Pearson equations D(phi u(k)) = (.psi+ k phi') u(k), 0 <= k <= N, are satisfied by the linear functionals in the bilinear form. Moreover, we use our results as a general method to deduce the Sobolev orthogonality for polynomial solutions of differential equations associated with classical orthogonal polynomials with negative integer parameters.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] On Sobolev bilinear forms and polynomial solutions of second-order differential equations
    J. C. García-Ardila
    M. E. Marriaga
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [2] Sobolev orthogonality of polynomial solutions of second-order partial differential equations
    Garcia-Ardila, Juan C.
    Marriaga, Misael E.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [3] Sobolev orthogonality of polynomial solutions of second-order partial differential equations
    Juan C. García-Ardila
    Misael E. Marriaga
    [J]. Computational and Applied Mathematics, 2023, 42
  • [4] Polynomial solutions for a class of second-order linear differential equations
    Saad, Nasser
    Hall, Richard L.
    Trenton, Victoria A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 615 - 634
  • [5] Chebyshev polynomial solutions of second-order linear partial differential equations
    Kesan, C
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (01) : 109 - 124
  • [6] BOUNDEDNESS OF SOLUTIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS AND SECOND-ORDER DIFFERENTIAL EQUATIONS WITH DELAY
    汤慕忠
    黄树荣
    [J]. Science Bulletin, 1989, (02) : 171 - 172
  • [7] Sobolev orthogonal polynomials and second-order differential equations
    Kwon, KH
    Littlejohn, LL
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) : 547 - 594
  • [8] Bivariate second-order linear partial differential equations and orthogonal polynomial solutions
    Area, I.
    Godoy, E.
    Ronveaux, A.
    Zarzo, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 1188 - 1208
  • [9] Physical applications of second-order linear differential equations that admit polynomial solutions
    Ciftci, Hakan
    Hall, Richard L.
    Saad, Nasser
    Dogu, Ebubekir
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (41)
  • [10] On the Solutions of Second-Order Differential Equations with Polynomial Coefficients: Theory, Algorithm, Application
    Bryenton, Kyle R.
    Cameron, Andrew R.
    Kirk, Keegan L. A.
    Saad, Nasser
    Strongman, Patrick
    Volodin, Nikita
    [J]. ALGORITHMS, 2020, 13 (11) : 1 - 22