On Sobolev bilinear forms and polynomial solutions of second-order differential equations

被引:0
|
作者
J. C. García-Ardila
M. E. Marriaga
机构
[1] Universidad Politécnica de Madrid,Departamento de Matemática Aplicada a la Ingeniería Industrial
[2] Universidad Rey Juan Carlos,Departamento de Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica
关键词
Classical orthogonal polynomials; Sobolev orthogonal polynomials; Nonstandard parameters; 42C05; 33C45;
D O I
暂无
中图分类号
学科分类号
摘要
Given a linear second-order differential operator L≡ϕD2+ψD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}\equiv \phi \,D^2+\psi \,D$$\end{document} with non zero polynomial coefficients of degree at most 2, a sequence of real numbers λn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _n$$\end{document}, n⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 0$$\end{document}, and a Sobolev bilinear form B(p,q)=∑k=0Nuk,p(k)q(k),N⩾0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {B}}(p,q)\,=\,\sum _{k=0}^N\left\langle {{\mathbf {u}}_k,\,p^{(k)}\,q^{(k)}}\right\rangle , \quad N\geqslant 0, \end{aligned}$$\end{document}where uk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {u}}_k$$\end{document}, 0⩽k⩽N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\leqslant k \leqslant N$$\end{document}, are linear functionals defined on polynomials, we study the orthogonality of the polynomial solutions of the differential equation L[y]=λny\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}[y]=\lambda _n\,y$$\end{document} with respect to B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}. We show that such polynomials are orthogonal with respect to B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} if the Pearson equations D(ϕuk)=(ψ+kϕ′)uk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\phi \,{\mathbf {u}}_k)=(\psi +k\,\phi ')\,{\mathbf {u}}_k$$\end{document}, 0⩽k⩽N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\leqslant k \leqslant N$$\end{document}, are satisfied by the linear functionals in the bilinear form. Moreover, we use our results as a general method to deduce the Sobolev orthogonality for polynomial solutions of differential equations associated with classical orthogonal polynomials with negative integer parameters.
引用
收藏
相关论文
共 50 条
  • [1] On Sobolev bilinear forms and polynomial solutions of second-order differential equations
    Garcia-Ardila, J. C.
    Marriaga, M. E.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)
  • [2] Sobolev orthogonality of polynomial solutions of second-order partial differential equations
    Garcia-Ardila, Juan C.
    Marriaga, Misael E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [3] Sobolev orthogonality of polynomial solutions of second-order partial differential equations
    Juan C. García-Ardila
    Misael E. Marriaga
    Computational and Applied Mathematics, 2023, 42
  • [4] Polynomial solutions for a class of second-order linear differential equations
    Saad, Nasser
    Hall, Richard L.
    Trenton, Victoria A.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 615 - 634
  • [5] Chebyshev polynomial solutions of second-order linear partial differential equations
    Kesan, C
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (01) : 109 - 124
  • [6] BOUNDEDNESS OF SOLUTIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS AND SECOND-ORDER DIFFERENTIAL EQUATIONS WITH DELAY
    汤慕忠
    黄树荣
    Chinese Science Bulletin, 1989, (02) : 171 - 172
  • [7] Sobolev orthogonal polynomials and second-order differential equations
    Kwon, KH
    Littlejohn, LL
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) : 547 - 594
  • [8] Bivariate second-order linear partial differential equations and orthogonal polynomial solutions
    Area, I.
    Godoy, E.
    Ronveaux, A.
    Zarzo, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 1188 - 1208
  • [9] Physical applications of second-order linear differential equations that admit polynomial solutions
    Ciftci, Hakan
    Hall, Richard L.
    Saad, Nasser
    Dogu, Ebubekir
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (41)
  • [10] On the Solutions of Second-Order Differential Equations with Polynomial Coefficients: Theory, Algorithm, Application
    Bryenton, Kyle R.
    Cameron, Andrew R.
    Kirk, Keegan L. A.
    Saad, Nasser
    Strongman, Patrick
    Volodin, Nikita
    ALGORITHMS, 2020, 13 (11) : 1 - 22