Differential equations and Sobolev orthogonality

被引:5
|
作者
Jung, IH
Kwon, KH
Lee, DW
Littlejohn, LL
机构
[1] KOREA ADV INST SCI & TECHNOL,DEPT MATH,YUSONG KU,TAEJON 305701,SOUTH KOREA
[2] UTAH STATE UNIV,DEPT MATH & STAT,LOGAN,UT 84322
关键词
spectral differential equations; Sobolev orthogonal polynomials; symmetrizability of differential operator;
D O I
10.1016/0377-0427(95)00111-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider (Sobolev) orthogonal polynomials which are orthogonal relative to a Sobolev bilinear form integral(R) p(x)q(x)d mu(x) + integral(R) p'(x)q'd nu(x), where d mu(x) and d nu(x) are signed Borel measures with finite moments. We give necessary and sufficient conditions under which such orthogonal polynomials satisfy a linear spectral differential equation with polynomial coefficients. We then find a sufficient condition under which such a differential equation is symmetrizable. These results can be applied to Sobolev-Laguerre polynomials found by Koekoek and Meijer.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [31] SOBOLEV ORTHOGONAL POLYNOMIALS AND SPECTRAL DIFFERENTIAL-EQUATIONS
    JUNG, IH
    KWON, KH
    LEE, DW
    LITTLEJOHN, LL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) : 3629 - 3643
  • [32] PARTIAL DIFFERENTIAL EQUATIONS OF SOBOLEV-GALPERN TYPE
    SHOWALTE.RE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 207 - &
  • [33] On differential equations for Sobolev-type Laguerre polynomials
    Koekoek, J
    Koekoek, R
    Bavinck, H
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (01) : 347 - 393
  • [34] PARTIAL DIFFERENTIAL EQUATIONS OF SOBOLEV-GALPERN TYPE
    SHOWALTER, RE
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (03) : 787 - +
  • [35] Support Theorem for Stochastic Differential Equations with Sobolev Coefficients
    Jie Ren
    Jie Xu
    Potential Analysis, 2019, 51 : 333 - 360
  • [36] LINEAR METHODS FOR DIFFERENTIAL-EQUATIONS OF SOBOLEV TYPE
    AGARWAL, RP
    GUPTA, RC
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1987, 14 (07) : 519 - 525
  • [37] Fractional differential equations of Sobolev type with sectorial operators
    Yong-Kui Chang
    Rodrigo Ponce
    Silvia Rueda
    Semigroup Forum, 2019, 99 : 591 - 606
  • [38] SOBOLEV SL - PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS
    PARKUS, H
    COMPUTING, 1966, 1 (02) : 169 - &
  • [39] Differential fields and geodesic flows I. Orthogonality to the constants for autonomous differential equations
    Jaoui, Remi
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2020, 148 (03): : 529 - 595
  • [40] New steps on Sobolev orthogonality in two variables
    Bracciali, Cleonice F.
    Delgado, Antonia M.
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (04) : 916 - 926