Estimating the error distribution function in semiparametric regression

被引:24
|
作者
Muller, Ursula U. [1 ]
Schick, Anton [2 ]
Wefelmeyer, Wolfgang [3 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
Local linear smoother; i.i.d; representation; Donsker class; efficiency;
D O I
10.1524/stnd.2007.25.1.1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a stochastic expansion for a residual-based estimator of the error distribution function in a partly linear regression model. It implies a functional central limit theorem. As special cases we cover nonparametric, nonlinear and linear regression models.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [41] A LIMIT DISTRIBUTION OF THE SQUARE ERROR DEVIATION OF NONPARAMETRIC ESTIMATORS OF THE REGRESSION FUNCTION
    NADARAYA, EA
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (01): : 37 - 48
  • [42] Smooth simultaneous confidence band for the error distribution function in nonparametric regression
    Gu, Lijie
    Wang, Suojin
    Yang, Lijian
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 155
  • [43] Asymptotic distributions of error density and distribution function estimators in nonparametric regression
    Cheng, FX
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (02) : 327 - 349
  • [44] Estimating the conditional single-index error distribution with a partial linear mean regression
    Zhang, Jun
    Feng, Zhenghui
    Xu, Peirong
    [J]. TEST, 2015, 24 (01) : 61 - 83
  • [45] Estimating the conditional single-index error distribution with a partial linear mean regression
    Jun Zhang
    Zhenghui Feng
    Peirong Xu
    [J]. TEST, 2015, 24 : 61 - 83
  • [46] Covariate selection for semiparametric hazard function regression models
    Bunea, F
    McKeague, IW
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 92 (01) : 186 - 204
  • [47] Partly Functional Temporal Process Regression with Semiparametric Profile Estimating Functions
    Yan, Jun
    Huang, Jian
    [J]. BIOMETRICS, 2009, 65 (02) : 431 - 440
  • [48] Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk
    Xuejun Jiang
    Yunxian Li
    Aijun Yang
    Ruowei Zhou
    [J]. Empirical Economics, 2020, 58 : 2085 - 2103
  • [49] Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk
    Jiang, Xuejun
    Li, Yunxian
    Yang, Aijun
    Zhou, Ruowei
    [J]. EMPIRICAL ECONOMICS, 2020, 58 (05) : 2085 - 2103
  • [50] Estimating spatial quantile regression with functional coefficients: A robust semiparametric framework
    Lu, Zudi
    Tang, Qingguo
    Cheng, Longsheng
    [J]. BERNOULLI, 2014, 20 (01) : 164 - 189