MONOTONE FUNCTIONS AND CONVEX FUNCTIONS

被引:0
|
作者
NISHIURA, T
SCHNITZE.F
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:481 / &
相关论文
共 50 条
  • [31] Some problems about the representation of monotone operators by convex functions
    Penot, JP
    Zalinescu, C
    [J]. ANZIAM JOURNAL, 2005, 47 : 1 - 20
  • [32] Maximal Monotone Operators, Convex Functions and a Special Family of Enlargements
    Regina Sandra Burachik
    B. F. Svaiter
    [J]. Set-Valued Analysis, 2002, 10 : 297 - 316
  • [33] Bracketing numbers of convex and m-monotone functions on polytopes
    Doss, Charles R.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2020, 256
  • [34] DUAL REPRESENTATION OF MONOTONE CONVEX FUNCTIONS ON L0
    Kupper, Michael
    Svindland, Gregor
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (11) : 4073 - 4086
  • [35] SOME INEQUALITIES INVOLVING OPERATOR MEANS AND MONOTONE CONVEX FUNCTIONS
    Micic, Jadranka
    Moradi, Hamid Reza
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 135 - 145
  • [36] Maximal monotone operators, convex functions and a special family of enlargements
    Burachik, RS
    Svaiter, BF
    [J]. SET-VALUED ANALYSIS, 2002, 10 (04): : 297 - 316
  • [37] Estimating monotone convex functions via sequential shape modification
    Lee, Sanghan
    Lim, Johan
    Kim, Seung-Jean
    Joo, Yongsung
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (08) : 989 - 1000
  • [38] Estimates of operator convex and operator monotone functions on bounded intervals
    Najafi, Hamed
    Moslehian, Mohammad Sal
    Fujii, Masatoshi
    Nakamoto, Ritsuo
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2016, 45 (03) : 325 - 336
  • [39] Monotone operators representable by l.s.c. convex functions
    Martínez-Legaz, JE
    Svaiter, BF
    [J]. SET-VALUED ANALYSIS, 2005, 13 (01): : 21 - 46
  • [40] On Bregman-Type Distances for Convex Functions and Maximally Monotone Operators
    Burachik, Regina S.
    Martinez-Legaz, Juan E.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (02) : 369 - 384