DUAL REPRESENTATION OF MONOTONE CONVEX FUNCTIONS ON L0

被引:13
|
作者
Kupper, Michael [1 ]
Svindland, Gregor [2 ]
机构
[1] Humboldt Univ, Math Inst, D-10099 Berlin, Germany
[2] Ecole Polytech Fed Lausanne, CDM SFI CSF EXTRA 218, CH-1015 Lausanne, Switzerland
关键词
Monotone convex function; duality; subgradient; bipolar representation;
D O I
10.1090/S0002-9939-2011-10835-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study monotone convex functions psi : L-0 (Omega, F, P) -> (-infinity, infinity] and derive a dual representation as well as conditions that ensure the existence of a sigma-additive subgradient. The results are motivated by applications in economic agents' choice theory.
引用
收藏
页码:4073 / 4086
页数:14
相关论文
共 50 条
  • [1] Convex solid subsets of L0(X, μ)
    Schep, AR
    [J]. POSITIVITY, 2005, 9 (03) : 491 - 499
  • [2] Convex Solid Subsets of L0(X, μ)
    Anton R. Schep
    [J]. Positivity, 2005, 9 : 491 - 499
  • [3] COHERENT RISK MEASURE ON L0: NA CONDITION, PRICING AND DUAL REPRESENTATION
    Lepinette, Emmanuel
    Duc Thinh Vu
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2021, 24 (6-7)
  • [4] L0∞(G)* as the second dual of the group algebra L1(G) with a locally convex topology
    Singh, AI
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1999, 46 (01) : 143 - 150
  • [5] QCD Factorizations in Exclusive γ*γ* → ρL0ρL0
    Pire, B.
    Segond, M.
    Szymanowski, L.
    Wallon, S.
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2008, 184 : 224 - 228
  • [6] Some problems about the representation of monotone operators by convex functions
    Penot, JP
    Zalinescu, C
    [J]. ANZIAM JOURNAL, 2005, 47 : 1 - 20
  • [7] L0-Convex Compactness and Random Normal Structure in L0 (F, B)
    Tiexin Guo
    Erxin Zhang
    Yachao Wang
    George Yuan
    [J]. Acta Mathematica Scientia, 2020, 40 : 457 - 469
  • [8] L0-Convex Compactness and Random Normal Structure in L0 (F, B)
    Guo, Tiexin
    Zhang, Erxin
    Wang, Yachao
    Yuan, George
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (02) : 457 - 469
  • [9] THE SPARSE REPRESENTATION AND SMOOTHED L0 ALGORITHM FOR FACE RECOGNITION
    Zeng, Jun-Ying
    Zhai, Yi-Kui
    Gan, Jun-Ying
    [J]. PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 34 - 38
  • [10] MONOTONE FUNCTIONS AND CONVEX FUNCTIONS
    NISHIURA, T
    SCHNITZE.F
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1965, 12 (04) : 481 - &