INJECTIVE POSITIVELY ORDERED MONOIDS .2.

被引:5
|
作者
WEHRUNG, F
机构
[1] Département de Mathématiques, Université de Caen
关键词
D O I
10.1016/0022-4049(92)90105-O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue the study of positively ordered monoids (P.O.M.'s). We prove that injective P.O.M.'s are the retracts of the powers of PBAR = [0, infinity]. We also characterize the natural P.O.M.-homomorphism from a given refinement P.O.M. to its bidual, with e.g. applications to decomposition spaces. As another application, we prove that a refinement P.O.M. admits a `Banach limit' if and only if it embeds into a power of PBAR.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 50 条