On the finite basis problem for the monoids of partial extensive injective transformations

被引:0
|
作者
Xun Hu
Yuzhu Chen
Yanfeng Luo
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Chongqing Technology and Business University,School of Mathematics and Statistics
[3] Key Laboratory of Applied Mathematics and Complex Systems,undefined
来源
Semigroup Forum | 2015年 / 91卷
关键词
Partial extensive and injective transformation semigroups ; Identities; Finite basis problem; Nonfinitely based ; Hereditarily finitely based;
D O I
暂无
中图分类号
学科分类号
摘要
Let PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document} be the monoid of all partial (order-preserving) extensive and injective transformations over a chain of order n. We give a sufficient condition under which a semigroup is nonfinitely based and apply this condition to show that the monoid PEI3(POEI3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_3 (POEI_3)$$\end{document} is nonfinitely based. This together with the results of Edmunds and Goldberg gives a complete answer to the finite basis problem for the monoid PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document}: the monoid PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document} is nonfinitely based if and only if n⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 3$$\end{document}. Furthermore, it is shown that the monoid PEIn(POEIn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PEI_n (POEI_n)$$\end{document} is hereditarily finitely based if and only if n⩽2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\leqslant 2$$\end{document}.
引用
收藏
页码:524 / 537
页数:13
相关论文
共 50 条
  • [1] On the finite basis problem for the monoids of partial extensive injective transformations
    Hu, Xun
    Chen, Yuzhu
    Luo, Yanfeng
    SEMIGROUP FORUM, 2015, 91 (02) : 524 - 537
  • [2] Abelian Kernels of Some Monoids of Injective Partial Transformations and an Application
    Manuel Delgado
    Vítor H. Fernandes
    Semigroup Forum, 2000, 61 : 435 - 452
  • [3] Abelian kernels of some monoids of injective partial transformations and an application
    Delgado, M
    Fernandes, VH
    SEMIGROUP FORUM, 2000, 61 (03) : 435 - 452
  • [4] The finite basis problem for Kauffman monoids
    Auinger, K.
    Chen, Yuzhu
    Hu, Xun
    Luo, Yanfeng
    Volkov, M. V.
    ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 333 - 350
  • [5] THE FINITE BASIS PROBLEM FOR KISELMAN MONOIDS
    Ashikhmin, D. N.
    Volkov, M. V.
    Zhang, Wen Ting
    DEMONSTRATIO MATHEMATICA, 2015, 48 (04) : 475 - 492
  • [6] The finite basis problem for Kauffman monoids
    K. Auinger
    Yuzhu Chen
    Xun Hu
    Yanfeng Luo
    M. V. Volkov
    Algebra universalis, 2015, 74 : 333 - 350
  • [7] Presentations for some monoids of partial transformations on a finite chain
    Fernandes, VH
    Gomes, GMS
    Jesus, MM
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (02) : 587 - 604
  • [8] Finite basis problem for Annular monoids with rotation
    Zhang, Wen Ting
    Han, Bin Bin
    Luo, Yan Feng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [9] Finite basis problem for Lee monoids with involution
    Gao, Meng
    Zhang, Wen-Ting
    Luo, Yan-Feng
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4258 - 4273
  • [10] Finite basis problem for Catalan monoids with involution
    Gao, Meng
    Zhang, Wen Ting
    Luo, Yan Feng
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (06) : 1161 - 1177